• Title/Summary/Keyword: transglutaminase

Search Result 158, Processing Time 0.022 seconds

Inconsistency in the Improvements of Gel Strength in Chicken and Pork Sausages Induced by Microbial Transglutaminase

  • Kawahara, S.;Ahhmed, A.M.;Ohta, K.;Nakade, K.;Muguruma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1285-1291
    • /
    • 2007
  • This research investigated variation in the improvement of the texture of chicken and pork sausages induced by microbial transglutaminase (MTG). The extractability of myofibrillar proteins from these sausages as well as the ${\varepsilon}-({\gamma}-glutamyl)$lysine (G-L) content were also investigated. MTG treatment of sausages significantly increased the breaking strength values in both meat types, especially for samples incubated at $40^{\circ}C$. However, values of the breaking strength in both meat types were increased differently. The variation in protein extractability of samples incubated at $40^{\circ}C$ for both meat types could lead to some consideration of the mechanisms and the high accessions of myosin heavy chain (MHC) to MTG. SDS-PAGE analysis showed significant changes in the density of the bands after adding MTG, especially for the pork samples in which the bands disappeared totally. The G-L content in the presence of MTG was double that in control samples of both meat types. This study suggests that the binding ability of myofibrillar proteins with MTG is strong. This leads us to suggest that MTG functions positively with different improvements in the texture of chicken and pork products that are treated mechanically, such as sausages. Variability in gel improvement level between chicken and pork sausages was observed; this resulted from the variation in meat proteins in response to MTG, as well as to the original glutamyl and lysine content.

Effects of Transglutaminase on Pasting and Rheological Properties of Different Wheat Cultivars Blended with Barley or Soy Flour

  • Ahn, Hyun-Joo;Kim, Jae-Hyun;Chang, Yoon-Hyuk;Steffe, James F.;Ng, Perry K.W.;Park, Hee-Ra
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.52-57
    • /
    • 2008
  • The effects of transglutaminase (TG) on the pasting and rheological properties of different wheat cultivars ('Sharpshooter', 'Russ', and 'AcAriss') blended with barley (40%) or soy (20%) flour were investigated. In the rapid visco-analyzer (RVA) pasting profile, the addition of barley or soy flour to wheat flour samples induced a decrease in peak, trough, final viscosity, breakdown and setback values. However, TG treatment of these blends significantly increased peak viscosity and breakdown (p<0.05). In particular, TG treatment greatly increased the breakdown of wheat flour blended with soy flour, indicating that the cross-linking of proteins through TG may somehow be related to an increase in starch granule rupturing in pastes. Storage (G') and loss (G") moduli of the sample pastes increased with an increase in frequency ($\omega$), while complex viscosity (${\eta}*$) decreased. In all wheat cultivars, G', G", and $\eta$ were decreased by the addition of barley or soy flour, or TG treatment. Results suggest that protein cross-linking by TG can produce unique and improved properties in wheat flours blended with barley or soy flour.

Microbial Transglutaminase Modifies Gel Properties of Porcine Collagen

  • Erwanto, Y.;Kawahara, S.;Katayama, K.;Takenoyama, S.;Fujino, H.;Yamauchi, K.;Morishita, T.;Kai, Y.;Watanabe, S.;Muguruma, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.2
    • /
    • pp.269-276
    • /
    • 2003
  • We studied the gel properties of porcine collagen with microbial transglutaminase (MTGase) as a catalyst. A creep meter was used to measure the mechanical properties of gel. The results showed samples with high concentration of MTGase gelled faster than those with a low concentration of MTGase. The gel strength increased with incubation time and the peaks of breaking strength for 0.1, 0.2 and 0.5% MTGase were obtained at 40, 20 and 10 min incubation time, respectively. According to SDS-PAGE, the MTGase was successfully created a collagen polymer with an increase in molecular weight, whereas no change in formation was shown without MTGase. The sample with 0.5% MTGase began to polymerize after 10 or 20 min incubation at $50^{\circ}C$, and complete polymerization occurred after 40-60 min incubation. Scanning electron microscopic analysis revealed that the gel of porcine collagen in the presence of MTGase produced an extremely well cross-linked network. The differential scanning calorimetric analysis showed the peak thermal transition of porcine collagen gel was at $36^{\circ}C$, and that with MTGase no peak was detected during heating from 20 to $120^{\circ}C$. The melting point of porcine collagen gel could be controlled by MTGase concentration, incubation temperature and protein concentration. Knowledge of the structural and physicochemical properties of porcine collagen gel catalyzed with MTGase could facilitate their use in food products.

The Role of Transglutaminase in Double-stranded DNA-Triggered Antiviral Innate Immune Response

  • Yoo, Jae-Wook;Hong, Sun-Woo;Bose, Shambhunath;Kim, Ho-Jun;Kim, Soo-Youl;Kim, So-Youn;Lee, Dong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3893-3898
    • /
    • 2011
  • Cellular uptake of double-stranded DNA (dsDNA) triggers strong innate immune responses via activation of NF-${\kappa}B$ transcription factor. However, the detailed mechanism of dsDNA-mediated innate immune response remains yet to be elucidated. Here, we show that the expression of tazarotene-induced gene 3 (TIG3) is dramatically induced by dsDNA stimulation, and the siRNA-mediated down-regulation of TIG3 mRNA results in significant suppression of dsDNA-triggered cytokine expression. Because TIG3 has been previously shown to physically interact with transglutaminase (TG) 1 to activate TG activity, and TG2 has been shown to induce NF-${\kappa}B$ activity by inducing $I{\kappa}B{\alpha}$ polymerization, we tested whether TG also plays a role in dsDNA-mediated innate immune response. Pre-treatment of TG inhibitors dramatically reduces dsDNA-triggered cytokine induction. We also show that, in HeLa cells, TG2 is the major TG, and TIG3 physically interacts with TG2. Combined together, our results suggest a novel mechanism of dsDNA-triggered innate immune response which is critically dependent on TIG3 and TG2.

Evaluation of Porcine Myofibrillar Protein Gel Functionality as Affected by Microbial Transglutaminase and Red Bean [Vignia angularis] Protein Isolate at Various pH Values

  • Jang, Ho Sik;Lee, Hong Chul;Chin, Koo Bok
    • Food Science of Animal Resources
    • /
    • v.35 no.6
    • /
    • pp.841-846
    • /
    • 2015
  • This study was investigated to determine the effect of microbial transglutaminase (MTG) with or without red bean protein isolate (RBPI) on the porcine myofibrillar protein (MP) gel functionality at different pH values (pH 5.75-6.5). Cooking yield (CY, %), gel strength (GS, gf), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were determined to measure gel characteristics. Since no differences were observed the interaction between 1% RBPI and pH, data were pooled. CY increased with the addition of 1% RBPI, while it was not affected by pH values. GS increased with increased pH and increased when 1% RBPI was added, regardless of pH. There were distinctive endothermic protein peaks, at 56.55 and 75.02℃ at pH 5.75, and 56.47 and 72.43℃ at pH 6.5 in DSC results, which revealed decreased temperature of the first peak with the addition of 1% RBPI and increased pH. In SEM, a more compact structure with fewer voids was shown with the addition of 1% RBPI and increased pH from 5.75 to 6.5. In addition, the three-dimensional structure was highly dense and hard at pH 6.5 when RBPI was added. These results indicated that the addition of 1% RBPI at pH 6.5 in MTG-mediated MP represent the optimum condition to attain maximum gel-formation and protein gel functionality.

Effect of Transglutaminase Addition on the Physicochemical Properties of Sodium Caseinate and Whey Proteins

  • Jeong, Ji-Eun;Hong, Youn-Ho
    • Food Science of Animal Resources
    • /
    • v.29 no.4
    • /
    • pp.415-422
    • /
    • 2009
  • In this study, several factors were analyzed in an effort to determine the effects of transglutaminase (TGase) treatment on sodium caseinate (NaCN), ${\alpha}--lactalbumin$ (${\alpha}-La$), and ${\beta}-lactoglobulin$ (${\beta}-Lg$) polymerization reactions. The results of SDSPAGE showed that NaCN was slightly hydrolyzed to molecular weights of 50-400 kDa according to activation time. ${\alpha}-La$ formed high-molecular polymers of 30-300 kDa, whereas ${\beta}-Lg$ remained almost completely unhydrolyzed. Melting temperatures of NaCN, ${\alpha}-La$ with and without TGase were all in the range of $100{\pm}10^{\circ}C$ under the endothermic curve, and the melting temperature of ${\beta}-Lg$ with TGase was lower than that with TGase. When the proteins were incubated for 3 h with TGase, the micrographic structures showed a small quantity of sediment and broad layers. The final ${\alpha}-La$ residues remained at a level of 21.38%, and the TGase-treated ${\alpha}-La$ was confirmed to have undergone a profound loss of mass, to 18.25%. The DPPH-radical scavenging activity of NaCN and ${\beta}-Lg$ with TGase treatment was higher than that observed in the untreated sample, while those of ${\alpha}-La$ increased with concentration.

12-O-Tetradecanoylphorbol-13-Acetate Induces Keratin 8 Phosphorylation and Reorganization via Expression of Transglutaminase-2

  • Lee, Eun Ji;Park, Mi Kyung;Kim, Hyun Ji;Kang, June Hee;Kim, You Ri;Kang, Gyeoung Jin;Byun, Hyun Jung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • The stiffness of cancer cells is attributable to intermediate filaments such as keratin. Perinuclear reorganization via phosphorylation of specific serine residue in keratin is implicated in the deformability of metastatic cancer cells including the human pancreatic carcinoma cell line (PANC-1). 12-O-Tetradecanoylphorbol-13-acetate (TPA) is a potent tumor promoter and protein kinase C (PKC) activator. However, its effects on phosphorylation and reorganization of keratin 8 (K8) are not well known. Therefore, we examined the underlying mechanism and effect of TPA on K8 phosphorylation and reorganization. TPA induced phosphorylation and reorganization of K8 and transglutaminase-2 (Tgase-2) expression in a time- and dose-dependent manner in PANC-1 cells. These effects peaked after 45 min and 100 nM of TPA treatment. We next investigated, using cystamine (CTM), Tgase inhibitor, and Tgase-2 gene silencing, Tgase-2's possible involvement in TPA-induced K8 phosphorylation and reorganization. We found that Tgase-2 gene silencing inhibited K8 phosphorylation and reorganization in PANC-1 cells. Tgase-2 gene silencing, we additionally discovered, suppressed TPA-induced migration of PANC-1 cells and Tgase-2 overexpression induced migration of PANC-1 cells. Overall, these results suggested that TPA induced K8 phosphorylation and reorganization via Tgase-2 expression in PANC-1 cells.

Ethacrynic Acid Inhibits Sphingosylphosphorylcholine-Induced Keratin 8 Phosphorylation and Reorganization via Transglutaminase-2 Inhibition

  • Byun, Hyun Jung;Kang, Kyung Jin;Park, Mi Kyung;Lee, Hye Ja;Kang, June Hee;Lee, Eun Ji;Kim, You Ri;Kim, Hyun Ji;Kim, Young Woo;Jung, Kyung Chae;Kim, Soo Youl;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.5
    • /
    • pp.338-342
    • /
    • 2013
  • Sphingosylphosphorylcholine (SPC) is significantly increased in the malicious ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments in PANC-1 cells. The reorganization contributes to the viscoelasticity of metastatic cancer cells resulting in increased migration. Recently, we reported that transglutaminase-2 (Tgase-2) is involved in SPC-induced K8 phosphorylation and reorganization. However, effects of Tgase-2 inhibitors on SPC-induced K8 phosphorylation and reorganization were not clearly studied. We found that ethacrynic acid (ECA) concentration-dependently inhibited Tgase-2. Therefore, we examined the effects of ECA on SPC-induced K8 phosphorylation and reorganization. ECA concentration-dependently suppressed the SPC-induced phosphorylation and perinuclear reorganization of K8. ECA also suppressed the SPC-induced migration and invasion. SPC induced JNK activation through Tgase-2 expression and ECA suppressed the activation and expression of JNK in PANC-1 cells. These results suggested that ECA might be useful to control Tgase-2 dependent metastasis of cancer cells such as pancreatic cancer and lung cancers.

A Role of Tissue Transglutaminase in the Germinal Vesicle Breakdown of Mouse Oocytes

  • Kim, Sung-Woo;Park, Jin-Ki;Lee, Yun-Keun;Lee, Poongyeon;Kim, Jung-Ho;Han, Joo-Hee;Park, Chun-Gyu;Ha, Kwon-Soo;Chang, Won-Kyong
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.61-61
    • /
    • 2003
  • We have investigated the novel function of tissue transglutaminase (tTG) in the germinal vesicle breakdown (GVBD) of mouse oocyte. tTG was identified in ooplasm and germinal vesicle by immunostaining assay. Spontaneous maturation of the oocytes elevated in situ activity of tTG by over 2.5 fold at 3 hr, which was determined by a confocal microscopic assay. However, incubation with monodansylcadaverine (MDC), a tTG inhibitor, blocked the activation of tTG. The possible role of tTG in GVBD was investigated by the use of two tTG inhibitors, MDC and cystamine. MDC largely inhibited the GVBD by a concentration dependent manner. GV-stage oocytes were matured to the GVBD stage by 78% at 3 hr in BWW culture medium. However, in the oocytes incubated with MDC for 3 hr, the GVBD rates were 43 and 11% by 50 and 100 mM, respectively. MDC also blocked the entry of 70 kDa TRITC-dextran from the ooplasm to the compartment of germinal vesicle, indicating a possible inhibition of nuclear pore disassembly by MDC. The role of tTG in GVBD was further investigated by microinjection with cystamine. The control oocytes, injected with DPBS, showed about 80 % of GVBD at 3 hr. But the oocytes injected with cystamine showed 15% of GVBD at 3 hr and a little higher rate at 6 hr. In addition, the inhibition of GVBD maturation by MDC was reversible by washing. These results suggested that tTG was involved in the early event of mouse oocyte maturation

  • PDF