DOI QR코드

DOI QR Code

Ethacrynic Acid Inhibits Sphingosylphosphorylcholine-Induced Keratin 8 Phosphorylation and Reorganization via Transglutaminase-2 Inhibition

  • Received : 2013.09.02
  • Accepted : 2013.09.16
  • Published : 2013.09.30

Abstract

Sphingosylphosphorylcholine (SPC) is significantly increased in the malicious ascites of tumor patients and induces perinuclear reorganization of keratin 8 (K8) filaments in PANC-1 cells. The reorganization contributes to the viscoelasticity of metastatic cancer cells resulting in increased migration. Recently, we reported that transglutaminase-2 (Tgase-2) is involved in SPC-induced K8 phosphorylation and reorganization. However, effects of Tgase-2 inhibitors on SPC-induced K8 phosphorylation and reorganization were not clearly studied. We found that ethacrynic acid (ECA) concentration-dependently inhibited Tgase-2. Therefore, we examined the effects of ECA on SPC-induced K8 phosphorylation and reorganization. ECA concentration-dependently suppressed the SPC-induced phosphorylation and perinuclear reorganization of K8. ECA also suppressed the SPC-induced migration and invasion. SPC induced JNK activation through Tgase-2 expression and ECA suppressed the activation and expression of JNK in PANC-1 cells. These results suggested that ECA might be useful to control Tgase-2 dependent metastasis of cancer cells such as pancreatic cancer and lung cancers.

Keywords

References

  1. Beil, M., Micoulet, A., von Wichert, G., Paschke, S., Walther, P., Omary, M. B., Van Veldhoven, P. P., Gern, U., Wolff-Hieber, E., Eggermann, J., Waltenberger, J., Adler, G., Spatz, J. and Seufferlein, T. (2003) Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5, 803-811. https://doi.org/10.1038/ncb1037
  2. Bordeleau, F., Bessard, J., Sheng, Y. and Marceau, N. (2008) Keratin contribution to cellular mechanical stress response at focal adhesions as assayed by laser tweezers. Biochem. Cell Biol. 86, 352-359. https://doi.org/10.1139/O08-076
  3. Busch, T., Armacki, M., Eiseler, T., Joodi, G., Temme, C., Jansen, J., von Wichert, G., Omary, M. B., Spatz, J. and Seufferlein, T. (2012) Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. J. Cell Sci. 125, 2148-2159. https://doi.org/10.1242/jcs.080127
  4. Cheng, C. C., Liu, Y. H., Ho, C. C., Chao, W. T., Pei, R. J., Hsu, Y. H., Yeh, K. T., Ho, L. C., Tsai, M. C. and Lai, Y. S. (2008) The influence of plectin deficiency on stability of cytokeratin18 in hepatocellular carcinoma. J. Mol. Histol. 39, 209-216. https://doi.org/10.1007/s10735-007-9155-9
  5. Chhabra, A., Verma, A. and Mehta, K. (2009) Tissue transglutaminase promotes or suppresses tumors depending on cell context. Anticancer Res. 29, 1909-1919.
  6. Cross, S. E., Jin, Y. S., Rao, J. and Gimzewski, J. K. (2007) Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780-783. https://doi.org/10.1038/nnano.2007.388
  7. Han, Y., Englert, J. A., Delude, R. L. and Fink, M. P. (2005) Ethacrynic acid inhibits multiple steps in the NF-kappaB signaling pathway. Shock 23, 45-53. https://doi.org/10.1097/01.shk.0000150629.53699.3f
  8. Kim, K. M., Noh, M. S., Kim, S. H., Park, M. K., Lee, H. J., Kim, S. Y. and Lee, C. H. (2010) Ethacrynic acid and citral suppressed the all trans retinoid-induced monocyte chemoattractant protein-1 production in human dermal fibroblasts. Biomol. Ther. 18, 71-76. https://doi.org/10.4062/biomolther.2010.18.1.071
  9. Kim, S. Y. (2011) Transglutaminase 2: a new paradigm for NF-kappaB involvement in disease. Adv. Enzymol. Relat. Areas Mol. Biol. 78, 161-195.
  10. Ku, N. O., Azhar, S. and Omary, M. B. (2002) Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation. J. Biol. Chem. 277, 10775-10782. https://doi.org/10.1074/jbc.M107623200
  11. Lai, T. S., Liu, Y., Tucker, T., Daniel, K. R., Sane, D. C., Toone, E., Burke, J. R., Strittmatter, W. J. and Greenberg, C. S. (2008) Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem. Biol. 15, 969-978. https://doi.org/10.1016/j.chembiol.2008.07.015
  12. Lee, K. N., Arnold, S. A., Birckbichler, P. J., Patterson, M. K., Jr., Fraij, B. M., Takeuchi, Y. and Carter, H. A. (1993) Site-directed mutagenesis of human tissue transglutaminase: Cys-277 is essential for transglutaminase activity but not for GTPase activity. Biochim. Biophys. Acta 1202, 1-6. https://doi.org/10.1016/0167-4838(93)90055-V
  13. Lee, S. H., Kim, N., Kim, S. J., Song, J., Gong, Y. D. and Kim, S. Y. (2013) Anti-cancer effect of a quinoxaline derivative GK13 as a transglutaminase 2 inhibitor. J. Cancer Res. Clin. Oncol. 139, 1279-1294. https://doi.org/10.1007/s00432-013-1433-1
  14. Li, R. and El-Mallakh, R. S. (2004) Differential response of bipolar and normal control lymphoblastoid cell sodium pump to ethacrynic acid. J. Affect. Disord. 80, 11-17. https://doi.org/10.1016/S0165-0327(03)00044-2
  15. Mhaouty-Kodja, S. (2004) Ghalpha/tissue transglutaminase 2: an emerging G protein in signal transduction. Biol. Cell 96, 363-367. https://doi.org/10.1111/j.1768-322X.2004.tb01427.x
  16. Park, M. K., Jo, S. H., Lee, H. J., Kang, J. H., Kim, Y. R., Kim, H. J., Lee, E. J., Koh, J. Y., Ahn, K. O., Jung, K. C., Oh, S. H., Kim, S. Y. and Lee, C. H. (2013a) Novel suppressive effects of cardamonin on the activity and expression of transglutaminase-2 lead to blocking the migration and invasion of cancer cells. Life Sci. 92, 154-160. https://doi.org/10.1016/j.lfs.2012.11.009
  17. Park, M. K., Lee, H. J., Shin, J., Noh, M., Kim, S. Y. and Lee, C. H. (2011) Novel participation of transglutaminase-2 through c-Jun N-terminal kinase activation in sphingosylphosphorylcholine-induced keratin reorganization of PANC-1 cells. Biochim. Biophys. Acta 1811, 1021-1029. https://doi.org/10.1016/j.bbalip.2011.07.007
  18. Park, M. K., Park, Y., Shim, J., Lee, H. J., Kim, S. and Lee, C. H. (2012) Novel involvement of leukotriene B(4) receptor 2 through ERK activation by PP2A down-regulation in leukotriene B(4)-induced keratin phosphorylation and reorganization of pancreatic cancer cells. Biochim. Biophys. Acta 1823, 2120-2129. https://doi.org/10.1016/j.bbamcr.2012.09.004
  19. Park, M. K., You, H. J., Lee, H. J., Kang, J. H., Oh, S. H., Kim, S. Y. and Lee, C. H. (2013b) Transglutaminase-2 induces N-cadherin expression in TGF-beta1-induced epithelial mesenchymal transition via c-Jun-N-terminal kinase activation by protein phosphatase 2A down-regulation. Eur. J. Cancer 49, 1692-1705. https://doi.org/10.1016/j.ejca.2012.11.036
  20. Rolli, C. G., Seufferlein, T., Kemkemer, R. and Spatz, J. P. (2010) Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel-based approach. PLoS One 5, e8726. https://doi.org/10.1371/journal.pone.0008726
  21. Suresh, S. (2007) Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413-438. https://doi.org/10.1016/j.actbio.2007.04.002
  22. Steeg, P. S. (2006) Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895-904. https://doi.org/10.1038/nm1469
  23. Valastyan, S. and Weinberg, R. A. (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292. https://doi.org/10.1016/j.cell.2011.09.024
  24. Verma, A., Wang, H., Manavathi, B., Fok, J. Y., Mann, A. P., Kumar, R. and Mehta, K. (2006) Increased expression of tissue transglutaminase in pancreatic ductal adenocarcinoma and its implications in drug resistance and metastasis. Cancer Res. 66, 10525-10533. https://doi.org/10.1158/0008-5472.CAN-06-2387
  25. Vivas, L. and Chiaraviglio, E. (1989) Central effect of agents which alter sodium transport on water drinking in the rat. Brain Res. Bull. 22, 201-206. https://doi.org/10.1016/0361-9230(89)90044-0
  26. Wall, G. C., Bigner, D. and Craig, S. (2003) Ethacrynic acid and the sulfa-sensitive patient. Arch. Intern. Med. 163, 116-117. https://doi.org/10.1001/archinte.163.1.116

Cited by

  1. Novel effects of FTY720 on perinuclear reorganization of keratin network induced by sphingosylphosphorylcholine: Involvement of protein phosphatase 2A and G-protein-coupled receptor-12 vol.775, 2016, https://doi.org/10.1016/j.ejphar.2016.02.024
  2. Critical Role of the Sphingolipid Pathway in Stroke: a Review of Current Utility and Potential Therapeutic Targets vol.7, pp.5, 2016, https://doi.org/10.1007/s12975-016-0477-3
  3. Phosphorylation and Reorganization of Keratin Networks: Implications for Carcinogenesis and Epithelial Mesenchymal Transition vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.032
  4. Intermediate filament reorganization dynamically influences cancer cell alignment and migration vol.7, 2017, https://doi.org/10.1038/srep45152
  5. Novel effects of sphingosylphosphorylcholine on invasion of breast cancer: Involvement of matrix metalloproteinase-3 secretion leading to WNT activation vol.1862, pp.9, 2016, https://doi.org/10.1016/j.bbadis.2016.05.010
  6. Transglutaminase is a tumor cell and cancer stem cell survival factor vol.54, pp.10, 2015, https://doi.org/10.1002/mc.22375
  7. Increased Levels of Sphingosylphosphorylcholine (SPC) in Plasma of Metabolic Syndrome Patients vol.10, pp.10, 2015, https://doi.org/10.1371/journal.pone.0140683
  8. Epithelial membrane protein 2 regulates sphingosylphosphorylcholine-induced keratin 8 phosphorylation and reorganization: Changes of PP2A expression by interaction with alpha4 and caveolin-1 in lung cancer cells vol.1863, pp.6, 2016, https://doi.org/10.1016/j.bbamcr.2016.02.007
  9. 12-O-Tetradecanoylphorbol-13-Acetate Induces Keratin 8 Phosphorylation and Reorganization via Expression of Transglutaminase-2 vol.22, pp.2, 2014, https://doi.org/10.4062/biomolther.2014.007
  10. Inhibition of autophagy promoted sphingosylphosphorylcholine induced cell death in non-small cell lung cancer cells vol.453, pp.3, 2014, https://doi.org/10.1016/j.bbrc.2014.09.120
  11. Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment vol.11, pp.11, 2013, https://doi.org/10.3390/cancers11111696
  12. Ethacrynic Acid Enhances the Antitumor Effects of Afatinib in EGFR/T790M-Mutated NSCLC by Inhibiting WNT/Beta-Catenin Pathway Activation vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5530673