• Title/Summary/Keyword: transgenic rice

Search Result 265, Processing Time 0.033 seconds

Overexpression of the Escherichia coli catalase gene, katE, enhances tolerance to salinity stress in the transgenic indica rice cultivar, BR5

  • Moriwaki, Teppei;Yamamoto, Yujirou;Aida, Takehiko;Funahashi, Tatsuya;Shishido, Toshiyuki;Asada, Masataka;Prodhan, Shamusul Haque;Komamine, Atsushi;Motohashi, Tsuyoshi
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • Salinity stress is a major limiting factor in cereal productivity. Many studies report improvements in salt tolerance using model plants, such as Arabidopsis thaliana or standard varieties of rice, e.g., the japonica rice cultivar Nipponbare. However, there are few reports on the enhancement of salt tolerance in local rice cultivars. In this work, we used the indica rice (Oryza sativa) cultivar BR5, which is a local cultivar in Bangladesh. To improve salt tolerance in BR5, we introduced the Escherichia coli catalase gene, katE. We integrated the katE gene into BR5 plants using an Agrobacterium tumefaciens-mediated method. The introduced katE gene was actively expressed in the transgenic BR5 rice plants, and catalase activity in $T_1$ and $T_2$ transgenic rice was approximately 150% higher than in nontransgenic plants. Under NaCl stress conditions, the transgenic rice plants exhibited high tolerance compared with nontransgenic rice plants. $T_2$ transgenic plants survived in a 200 mM NaCl solution for 2 weeks, whereas nontransgenic plants were scorched after 4 days soaking in the same NaCl solution. Our results indicate that the katE gene can confer salt tolerance to BR5 rice plants. Enhancement of salt tolerance in a local rice cultivar, such as BR5, will provide a powerful and useful tool for overcoming food shortage problems.

Expression of Human Interleukin-ll and Granulocyte-Macrophage Colony-Stimulating Factor in Transgenic Plants

  • LEE BO-YE;LEE JEONG-HYUN;YOON HOON-SEOK;KANG KYUNG HO;KIM KYUNG-NAM;KIM JAE-HONG;KIM JU-KON;KIM JEONG-KOOK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1304-1309
    • /
    • 2005
  • The production of therapeutic proteins for human diseases in plants results in many economic benefits, including reduced risk of animal virus contamination, high yields, and reduced production and storage costs. Human cytokines, interleukin-11 (hlL-11) and granulocyte-macrophage colony-stimulating factor (hGM-CSF), cDNAs were introduced into rice or tobacco, using either the maize ubiquitin promoter or the 35S promoter. The primary hIL-11 transgenic rice plants exhibited stunted growth and a sterile phenotype, whereas the hIL-11 transgenic tobacco plants did not. This suggests that hIL-11 expression in rice disrupts the normal growth and development of the plant. The regeneration efficiency of rice calli transformed with hGM-CSF was found to be approximately a quarter of that seen with the hIL-11, suggesting that hGM-CSF expression is more deleterious to the regeneration of rice calli than is hIL-11. However, the surviving hGM-CSF transgenic rice plants exhibited a normal phenotype of growth. Therefore, it appears that only those transgenic rice lines that expressed the human cytokines in small quantities were able to survive the selection process.

Development of transgenic rice lines expressing the human lactoferrin gene

  • Lee, Jin-Hyoung;Kim, Il-Gi;Kim, Hyo-Sung;Shin, Kong-Sik;Suh, Seok-Cheol;Kweon, Soon-Jong;Rhim, Seong-Lyul
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.556-561
    • /
    • 2010
  • Lactoferrin is an 80-kDa iron-binding glycoprotein that is found in high concentrations in human milk. Human lactoferrin (hLF) has several beneficial biological activities including immune system modulation and antimicrobial activity. In the present study, we devolved a method of hLF expression through introducing the hLF gene construct into Oriza sativa cv. Nakdong using the Agrobacterium-mediated transformation system. The expression of the hLF gene under the control of the rice glutelin promoter was detected in the seeds of transgenic rice plants. Transformed rice plants were selected on media containing herbicide(DL-phosphinothricin) and the integration of hLF cDNA was confirmed by Southern blot analysis. The expression of the full length hLF protein from the grains of transgenic rice plants was verified by Western blot analysis. The lactoferrin expression levels in the transformed rice grains determined by enzyme-linked immunosorbant assay accounted for approximately 1.5% of total soluble protein. Taken together, these data indicate that rice grains expressing hLF can be directly incorporated into infant formula and baby food.

Improvement of Transformation Efficiencies using Agrobacterium-Mediated Transformation of Korean Rice

  • Cho, Joon-Hyeong;Lee, Jang-Yong;Kim, Yong-Wook;Lee, Myoung-Hoon;Park, Seong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.61-68
    • /
    • 2004
  • A reproducible transformation system via optimized regeneration media for Korean rice cultivars was established using Agrobacterium tumefeciens LBA4404 (pSBM-PPGN; gusA and bar). Although japonica rice genotypes were easier to produce transgenic plants compared to Tongil type cultivars, transformation efficiencies were not always correlated with regeneration efficiencies of non-transgenic callus on the control medium. Regeneration efficiencies of Donganbyeo, Ilmibyeo, and Manchubyeo were over 50% in non-transgenic control, however, transformation efficiencies were significantly low when only sucrose was added to the media as a carbon source. However, the medium, MSRK5SS-Pr (or MSRK5SM-Pr), that contains $5\textrm{mgL}^{-1}$ kinetin, $0.5\textrm{mgL}^{-1}$ NAA, 2 % sucrose (or maltose), 3% sorbitol, and $500\textrm{mgL}^{-1}$ proline, was the most efficient not only for regeneration of non-transgenic callus but also for regeneration of transgenic callus in the presence of L-phosphinotricin (PPT). Average transformation efficiencies of 16 Korean rice cultivars were significantly enhanced by using the optimized medium from 1.5% to 5.8% in independent callus lines and from 2.9% to 19.4% in tromsgenic plants obained. Approximately 98.9% (876 out of 885) transgenic plants obtained on optimized media showed basta resistance. Stable integration, inheritance and expression of gusA and bar genes were continued by GUS assay and PCR and Southern analysis of the bar gene. With Pst1 digestion of genomic DNA of transgenic plants, one to five copies of T-DNA segment were observed; however, 76% (19 out of 25 transgenic plants) has low copy number of T-DNA. The transformants obtained from one callus line showed the same copy numbers with the same fractionized band patterns.

Expression of Rice Chitinase Gene in Genetically Engineered Tomato Confers Enhanced Resistance to Fusarium Wilt and Early Blight

  • Jabeen, Nyla;Chaudhary, Zubeda;Gulfraz, Muhammad;Rashid, Hamid;Mirza, Bushra
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.252-258
    • /
    • 2015
  • This is the first study reporting the evaluation of transgenic lines of tomato harboring rice chitinase (RCG3) gene for resistance to two important fungal pathogens Fusarium oxysporum f. sp. lycopersici (Fol) causing fusarium wilt and Alternaria solani causing early blight (EB). In this study, three transgenic lines TL1, TL2 and TL3 of tomato Solanum lycopersicum Mill. cv. Riogrande genetically engineered with rice chitinase (RCG 3) gene and their R1 progeny was tested for resistance to Fol by root dip method and A. solani by detached leaf assay. All the R0 transgenic lines were highly resistant to these fungal pathogens compared to nontransgenic control plants. The pattern of segregation of three independent transformant for Fol and A. solani was also studied. Mendelian segregation was observed in transgenic lines 2 and 3 while it was not observed in transgenic line 1. It was concluded that introduction of chitinase gene in susceptible cultivar of tomato not only enhanced the resistance but was stably inherited in transgenic lines 2 and 3.

Inhibitory Effects of Resveratrol and Piceid against Pathogens of Rice Plant, and Disease Resistance Assay of Transgenic Rice Plant Transformed with Stilbene Synthase Gene

  • Yu, Sang-Mi;Lee, Ha Kyung;Jeong, Ui-Seon;Baek, So Hyeon;Noh, Tae-Hwan;Kwon, Soon Jong;Lee, Yong Hoon
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Resvestrol has been known to inhibit bacterial and fungal growth in vitro, and can be accumulated in plant to concentrations necessary to inhibit microbial pathogens. Hence, stilbene synthase gene has been used to transform to synthesize resveratrol in heterologous plant species to enhance resistance against pathogens. In the present study, we investigated the antimicrobial activities of resveratrol and piceid to bacterial and fungal pathogens, which causing severe damages to rice plants. In addition, disease resistance was compared between transgenic rice varieties, Iksan 515 and Iksan 526 transformed with stlibene synthase gene and non-transgenic rice varieties, Dongjin and Nampyeong. Minimum inhibitory concentration of resveratrol for Burkolderia glumae was 437.5 ${\mu}M$, and the mycelial growth of Biplaris oryzae was slightly inhibited at concentration of 10 ${\mu}M$. However, other bacterial and fungal pathogens are not inhibited by resveratrol and piceid. The expression of the stilbene synthase gene in Iksan 515 and Iksan 526 did not significantly enhanced resistance against bacterial grain rot, bacterial leaf blight, sheath blight, and leaf blight. This study is the first report on the effect of resveratrol and piceid against pathogens of rice plant, and changes of disease resistance of transgenic rice plants transformed with stilbene synthase gene.

Physiological Evaluation of Transgenic Rice Developed for Drought Tolerance

  • Ghimiren Sita Ram;Park Sang-Kyu;Kang Dong-Jin;Lee In-Jung;Shin Dong-Hyun;Kim Sung-Uk;Kim Kil-Ung
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.133-137
    • /
    • 2006
  • Evaluation of physiological performance of trehalose-producing transgenic rice line was conducted to investigate drought tolerance at early growth stage. Under artificially induced drought condition of 8% polyethylene glycol 6000, this transgenic rice line had leaf photosynthetic rate of 11.08 uml CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 8.38 mmol $H_2O$ $m^{-2}s^{-1}$ and leaf water potential of -1.12 MPa after 96 hours of treatment. Nakdongbyeo, the parent of this tyansgenic rice line, had photosynthetic rate of 15.42 $\mu$mol CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 8,04 mmol $H_2O$ $m^{-2}s^{-1}$ and leaf water potential of -0.88 MPa. The other variety used in this experiment for comparison, IR 72, showed higher values than both tyansgenic rice line and variety Nakdonbyeo on all three parameters; leaf photosynthetic rate of 20.61 $\mu$mol CO$_2$ $m^{-2}s^{-1}$, leaf transpiration rate of 12.88 mmol $H_2O$ $m^{-2}s^{-1}$, and leaf water potential of -0.82 MPa. So this transgenic rice line did not show superior performance in leaf transpiration rate, leaf photosynthetic rate and leaf water potential compared to variety Nakdongbyeo. This result along with visual observation on leaf rolling and drying during the experimental period indicated poor physiological performance of this transgenic rice line. Further studies on metabolic status of stress-induced trehalose, along with study on physiological response of this transgenic rice line during drought stress would shed more light on overall physiological performance of this transgenic rice line.

A Meta-Analysis for the Impact of Transgenic Crop Adoption on Corn and Soybean Yield

  • Lee, Sang-Hoon;Lee, Gyeong-Bo;Hwang, Seon-Woong;Kim, Hye-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.614-621
    • /
    • 2012
  • Although there is a broad dispute over genetically modified foods on safety, the worldwide adoption of transgenic crops is rapidly increasing. The objectives of this study were to identify trends in the effects of transgenic on crop yields and examine the effect of agricultural variables including crop type, biotech trait, tillage system, and yield environment on corn and soybean yield. A meta-analysis from the 34 peer-reviewed scientific literatures was conducted to compare the crop yield between transgenic crops and conventional varieties. Results showed that the yield of transgenic corn and soybean was strongly dependent on growing conditions. Transgenic hybrids had higher yield potential in the low crop yield environments such as high weeds and/or insect infestation, low soil water, and cool temperature conditions, while transgenic crops did not have yield advantages in high yield environments. The results from this study suggest that producers should consider the potential yield environmental conditions and possible yield reductions when producers choose crop hybrids in their fields.

CaPUB1, a Hot Pepper U-box E3 Ubiquitin Ligase, Confers Enhanced Cold Stress Tolerance and Decreased Drought Stress Tolerance in Transgenic Rice (Oryza sativa L.)

  • Min, Hye Jo;Jung, Ye Jin;Kang, Bin Goo;Kim, Woo Taek
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.250-257
    • /
    • 2016
  • Abiotic stresses such as drought and low temperature critically restrict plant growth, reproduction, and productivity. Higher plants have developed various defense strategies against these unfavorable conditions. CaPUB1 (Capsicum annuum Putative U-box protein 1) is a hot pepper U-box E3 Ub ligase. Transgenic Arabidopsis plants that constitutively expressed CaPUB1 exhibited drought-sensitive phenotypes, suggesting that it functions as a negative regulator of the drought stress response. In this study, CaPUB1 was over-expressed in rice (Oryza sativa L.), and the phenotypic properties of transgenic rice plants were examined in terms of their drought and cold stress tolerance. Ubi:CaPUB1 T3 transgenic rice plants displayed phenotypes hypersensitive to dehydration, suggesting that its role in the negative regulation of drought stress response is conserved in dicot Arabidopsis and monocot rice plants. In contrast, Ubi:CaPUB1 progeny exhibited phenotypes markedly tolerant to prolonged low temperature ($4^{\circ}C$) treatment, compared to those of wild-type plants, as determined by survival rates, electrolyte leakage, and total chlorophyll content. Cold stress-induced marker genes, including DREB1A, DREB1B, DREB1C, and Cytochrome P450, were more up-regulated by cold treatment in Ubi:CaPUB1 plants than in wild-type plants. These results suggest that CaPUB1 serves as both a negative regulator of the drought stress response and a positive regulator of the cold stress response in transgenic rice plants. This raises the possibility that CaPUB1 participates in the cross-talk between drought and low-temperature signaling pathways.