• 제목/요약/키워드: transgenic mice (Tg)

검색결과 46건 처리시간 0.037초

The Effect of Metformin Treatment on CRBP-I Level and Cancer Development in the Liver of HBx Transgenic Mice

  • Kim, Jo-Heon;Alam, Morshedul;Park, Doek Bae;Cho, Moonjae;Lee, Seung-Hong;Jeon, You-Jin;Yu, Dae-Yeul;Kim, Tae Du;Kim, Ha Young;Cho, Chung Gu;Lee, Dae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권5호
    • /
    • pp.455-461
    • /
    • 2013
  • Retinoids regulate not only various cell functions including proliferation and differentiation but also glucose and lipid metabolism. After we observed a marked up-regulation of cellular retinol-binding protein-I (CRBP-I) in the liver of hepatitis B virus x antigen (HBx)-transgenic (HBx Tg) mice which are prone to hepatocellular carcinoma (HCC) and fatty liver, we aimed to evaluate retinoid pathway, including genes for the retinoid physiology, CRBP-I protein expression, and retinoid levels, in the liver of HBx Tg mice. We also assessed the effect of chronic metformin treatment on HCC development in the mice. Many genes involved in hepatic retinoid physiology, including CRBP-I, were altered and the tissue levels of retinol and all-trans retinoic acid (ATRA) were elevated in the liver of HBx Tg mice compared to those of wild type (WT) control mice. CRBP-I protein expression in liver, but not in white adipose tissue, of HBx Tg mice was significantly elevated compared to WT control mice while CRBP-I protein expressions in the liver and WAT of high-fat fed obese and db/db mice were comparable to WT control mice. Chronic treatment of HBx Tg mice with metformin did not affect the incidence of HCC, but slightly increased hepatic CRBP-I level. In conclusion, hepatic CRBP-I level was markedly up-regulated in HCC-prone HBx Tg mice and neither hepatic CRBP-I nor the development of HCC was suppressed by metformin treatment.

신경병증성 통증과정의 NMDA 수용체 활성과 칼슘통로 α2δ1 Subunit의 영향 (NMDA Receptor Activation Mediates Neuropathic Pain States Induced by Calcium Channel α2δ1 Subunit)

  • 유수봉;임영수;김두식
    • The Korean Journal of Pain
    • /
    • 제22권3호
    • /
    • pp.210-215
    • /
    • 2009
  • Background: Several studies have indicated that a nerve injury enhances the expression of the voltage-gated calcium channel ${\alpha}2{\delta}1$ subunit (Cav ${\alpha}2{\delta}1$) in sensory neurons and the dorsal spinal cord. This study examined whether NMDA receptor activation is essential for Cav ${\alpha}2{\delta}1$-mediated tactile allodynia in Cav ${\alpha}2{\delta}1$ overexpressing transgenic mice and L5/6 spinal nerve ligated rats (SNL). These two models show similar Cav ${\alpha}2{\delta}1$ upregulation and behavioral hypersensitivity, without and with the presence of other injury factors, respectively. Methods: The transgenic (TG) mice were generated as described elsewhere (Feng et al., 2000). The left L5/6 spinal nerves in the Harlan Sprague Dawley rats were ligated tightly (SNL) to induce neuropathic pain, as described by Kim et al. (1992). Memantine 2 mg/kg (10 ul) was injected directly into the L5/6 spinal region followed by $10{\mu}l$ saline. Tactile allodynia was tested for any mechanical hypersensitivity. Results: The tactile allodynia in the SNL rats could be reversed by an intrathecal injection of memantine 2 mg/kg at 1.5 hours. The tactile allodynia in the Cav ${\alpha}2{\delta}1$ over-expressing TG mice could be reversed by an intrathecal injection of memantine 2 mg/kg at 1.5, 2.0 and 2.5 hours. Conclusions: The behavioral hypersensitivity was similar in the TG mice and nerve injury pain model, supporting the hypothesis that elevated Cav ${\alpha}2{\delta}1$ mediates similar pathways that underlie the pain states in both models. The selective activation of spinal NMDA receptors plays a key role in mediating the pain states in both the nerve-injury rats and TG mice.

Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma

  • Sohn, Kyoung-Hee;Baek, Min-gyung;Choi, Sung-Mi;Bae, Boram;Kim, Ruth Yuldam;Kim, Young-Chan;Kim, Hye-Young;Yi, Hana;Kang, Hye-Ryun
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1819-1826
    • /
    • 2020
  • Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13-overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.

Cardiac hypertrophy and abnormal $Ca^{2+}$ handling in transgenic mice overexpressing jnnctate

  • Hong, Chang-Soo;Cho, Myeong-Chan;Kwak, Yong-Geun;Chane, Soo-Wan;Kim, Do-Han
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 2003년도 정기총회 및 학술발표회
    • /
    • pp.52-52
    • /
    • 2003
  • Junctate is a newly identified integral ER/SR membrane $Ca^{2+}$ binding protein, which is an alternative splicing form of the same gene generating aspartyl $\square$-hydroxylase and junctin. To elucidate the functional role of junctate in heart, transgenic (TG) mice overexpressing mouse cardiac junctate-1 under the control of mouse $\square$$^{~}$ myosin heavy chain promoter were generated. Overexpression of junctate in mouse heart resulted in cardiac hypertrophy, increased fibrosis, bradycardia, arrhythmias and impaired contractility. Overexpression of junctate also led to down-regulation of SERCA2, calsequestrin, calreticulin and RyR, but to up-regulation of NCX and PMCA. The SR $Ca^{2+}$ content decreased and the L-type $Ca^{2+}$ current density and the action potential durations increased in TG cardiomyocytes, which could be the cause for the bradycardia in TG heart. The present work has provided an important example of pathogenesis leading to cardiac hypertrophy and arrhythmia, which was caused by impaired $Ca^{2+}$ handling by overexpression of junctate in heart.n heart.

  • PDF

PGC-1α 형질전환 생쥐에서 마늘 분말의 체지방 감소 효과 (The Body Fat-lowering Effect of Garlic Powder in Peroxisome Proliferator-activated Receptor γ Coactivator-1α (PGC-1α)-luciferase Transgenic Mice)

  • 이막순;김양하
    • 한국식품영양학회지
    • /
    • 제30권5호
    • /
    • pp.900-907
    • /
    • 2017
  • This study was performed to investigate the body fat-lowering effect of garlic powder in peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$)-luciferase transgenic mice (TG). In this study, we generated transgenic mice with a PGC-$1{\alpha}$ promoter (-970/+412 bp) containing luciferase as a reporter gene. Mice were fed a 45% high-fat diet for 8 weeks to induce obesity. Subsequently, mice were maintained on either a high-fat control diet (CON), or high-fat diets supplemented with 2% (GP2) or 5% (GP5) garlic powder for an additional 8 weeks. Dietary garlic powder reduced the body weight in the GP2 and GP5 groups, compared to the CON group. Furthermore, garlic supplementation significantly decreased the plasma levels of triglycerides, total cholesterol, and leptin in the GP5 group, compared to the CON group. Specifically, luciferase activity in liver, white adipose tissue (WAT), and brown adipose tissue (BAT) was increased by garlic supplementation in a dose-dependent manner. These results suggest that the body fat-lowering effect of garlic powder might be related to PGC-$1{\alpha}$ by the increase in luciferase activity in liver, WAT, and BAT. Furthermore, transgenic mice might be useful for evaluating the body fat-lowering effect of various health functional foods.

Co-expression of Human Proteins (IL-10, TPO and/or Lactoferrin) into Milk of Cross-Breed Transgenic Mouse

  • Zheng, Zhen-Yu;Lee, Hyo-Sang;Oh, Keon-Bong;Koo, Deog-Bon;Han, Yong-Mahn;Lee, Kyung-Kwang
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.45-49
    • /
    • 2008
  • We have previously produced transgenic (TG) mice expressing the human lactoferrin (hLF), interleukin-10 (hIL-10), and thrombopoietin (hTPO) proteins in the milk. In this study, we examined whether simple crossbreeding between two kids of a single transgenic mouse can produce double transgenics co-expressing two human proteins.. The hLF male, and the hIL-10 male were crossbred with the hIL-10 and hTPO females, and the hTPO female, respectively. PCR analysis for genotyping showed 32%, 23% and 24% double transgenic rates for hLF/hIL-10, hLF/hTPO, and hIL-10/hTPO transgenes, respectively. We analyzed the expression levels of the human proteins from double transgenic mice and compared those with their single transgenic siblings. All double transgenic co-expressed two human proteins at comparable levels to singles', unless hTPO was not co-expressed: for hLF, 1.1 mg/ml in hLF/hIL-10, whereas 0.5 mg/ml in hLF/hTPO; for hIL-10, 4.1 mg/ml in hIL-10/hLF, whereas 1.4 mg/ml in hIL-10/hTPO. Ihe downregulation of hTPO to half level of singles' was observed in double transgenic mice. The possible reason why hTPO co-expressed might lead to down-regulation of another human protein was discussed. These results suggested that double transgenic generated by crossbreeding between two singles' could be useful system for bioreactor.

저항성 운동이 알츠하이머 형질전환 생쥐 뇌의 베타 아밀로이드 대사와 인지기능에 미치는 영향 (The effect of resistance exercise on β-amyloid metabolism and cognitive function in a mouse model of Alzheimer's disease)

  • 장용철;구정훈
    • 한국응용과학기술학회지
    • /
    • 제37권3호
    • /
    • pp.418-428
    • /
    • 2020
  • 본 연구는 알츠하이머(Alzheimer's disease: AD) 형질전환 생쥐를 대상으로 저항성 운동(resistance exercise: RE)이 해마의 베타 아밀로이드(β-amyloid: Aβ) 단백질 대사, 신경세포사멸 및 인지기능에 미치는 영향을 확인하는데 목적이 있다. AD 비 형질전환 생쥐(non-transgenic: non-tg, n=14)와 형질전환 생쥐(transgenic: Tg, n=14)를 무선 배정하여 비 형질전환 생쥐 대조군 (non-tg-control: NTC, n=7), 비 형질전환 생쥐 저항성 운동군(non-tg-RE: NTRE, n=7), 형질전환 대조군(tg-control: TC, n=7) 및 형질전환 저항성 운동군(tg-RE: TRE, n=7)으로 구분하였다. RE는 특수 제작한 사다리 저항성 운동 기구를 사용하여 점진적으로 set 수를 증가시켜 총 8주간 실시하였다. 운동 후 인지기능 능력을 평가하기 위한 수중미로검사와 Aβ 단백질 대사, 신경세포사멸 지표 및 SIRT1/PGC-1α 단백질 발현 수준을 확인하였다. 수중미로검사 결과 거리와 시간 모두 TC 집단에서 유의하게 증가 되었지만 RE를 실시한 TRE 집단에서 거리와 시간이 감소 되어 인지능력이 개선된 것으로 확인되었다. 또한, TC 집단에서 증가된 Aβ 단백질 발현은 RE를 통해 감소하는 것으로 나타났다. 신경세포사멸 관련 단백질인 Bcl-2/Bax ratio는 TC 집단에서 유의하게 감소되어 신경세포사멸이 증가 된 것으로 나타났지만 RE는 Bcl-2/Bax ratio을 증가시켜 신경세포사멸을 감소시킨 것으로 확인되었다. TC 집단에서 증가된 BACE1 및 ROCK1과 감소된 ADAM10과 RARβ 단백질 발현은 RE를 통해 감소되거나 증가 된 것으로 나타났고, SIRT1/PGC-1α 단백질 발현은 TC 집단에서 감소 되었지만 RE를 통해 증가 된 것으로 나타났다. 따라서 8주간의 RE는 AD의 병리학적 특징인 Aβ 단백질 발현을 감소시키고 관련 생성 기전들을 조절하여(SIRT1/PGC-1α 기전 활성, 아밀로이드 생성기전 억제, 비-아밀로이드 생성기전 활성) 신경세포사멸 억제시키고 결과적으로 인지기능을 개선 시킬 수 있는 효과적인 운동 방법이라고 생각된다.

트레드밀 운동이 mutant (N141I) presenilin-2 유전자를 이식한 알츠하이머질환 모델 생쥐 뇌의 Aβ-42, cytochrome c, SOD-1, 2와 Sirt-3 단백질 발현에 미치는 영향 (The Effects of Treadmill Exercise on Cognitive Performance, Brain Mitochondrial Aβ-42, Cytochrome c, SOD-1, 2 and Sirt-3 Protein Expression in Mutant (N141I) Presenilin-2 Transgenic Mice of Alzheimer's Disease)

  • 구정훈;엄현섭;강은범;권인수;염동철;안길영;오유성;백영수;조인호;조준용
    • 생명과학회지
    • /
    • 제20권3호
    • /
    • pp.444-452
    • /
    • 2010
  • 본 연구의 목적은 PS-2 (N141I) 알츠하이머 형질전환 모델 생쥐를 대상으로 트레드밀 운동이 뇌의 세포질과 미토콘드리아의 $A{\beta}$-42, cytochrome c, SOD-1, 2 and Sirt-3 단백질 발현에 미치는 효과를 알아보는데 있다. 우선 알츠하이머 형질전환 생쥐를 Non-Tg-sedentary (n=5), Non-Tg-treadmill exercise (n=5) 집단과 Tg-sedentary (n=5), Tg-treadmill exercise (n=5) 집단으로 구분하고 트레드밀 운동을 통한 신경보호 효과를 검증하기 위해 Tg와 Non-Tg집단에 12주간 트레드밀 운동을 수행한 후 인지능력을 살펴보고 뇌의 세포질과 미토콘드리아의 $A{\beta}$-42, cytochrome c, anti-oxidant enzymes (SOD-1, SOD-2)와 Sirt-3 단백질을 분석하였다. 먼저 트레드밀운동은 Tg 집단에서 인지능력의 개선을 나타냈으며 미토콘드리아의 $A{\beta}$-42와 세포질의 cytochrome c 단백질의 감소와 항산화 효소인 SOD-1, SOD-2를 유의하게 증가시켰다. 게다가 트레드밀 운동은 모든 집단에서 Sirt-3 단백질의 발현을 증가시켰다. 따라서 트레드밀 운동은 인지능력의 향상과 세포 내 스트레스를 유발하는 $A{\beta}$-42를 억제시켜 알츠하이머 질환을 개선시킬 수 있는 효과적인 방법이라고 생각된다.

Interleukin-$32{\gamma}$ Transgenic Mice Resist LPS-Mediated Septic Shock

  • Kim, Sun Jong;Lee, Siyoung;Kwak, Areum;Kim, Eunsom;Jo, Seunghyun;Bae, Suyoung;Lee, Youngmin;Ryoo, Soyoon;Choi, Jida;Kim, Soohyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권8호
    • /
    • pp.1133-1142
    • /
    • 2014
  • Interleukin-32 (IL-32) is a cytokine and inducer of various proinflammatory cytokines such as $TNF{\alpha}$, IL-$1{\beta}$, and IL-6 as well as chemokines. There are five splicing variants (${\alpha}$, ${\beta}$, ${\gamma}$, ${\delta}$, and ${\varepsilon}$) and IL-$32{\gamma}$ is the most active isoform. We generated human IL-$32{\gamma}$ transgenic (IL-$32{\gamma}$ TG) mice to express high level of IL-$32{\gamma}$ in various tissues, including immune cells. The pathology of sepsis is based on the systemic inflammatory response that is characterized by upregulating inflammatory cytokines in whole body, particularly in response to gram-negative bacteria. We investigated the role of IL-$32{\gamma}$ in a mouse model of experimental sepsis by using lipopolysaccharides (LPS). We found that IL-$32{\gamma}TG$ mice resisted LPS-induced lethal endotoxemia. IL-$32{\gamma}$ reduced systemic cytokines release after LPS administration but not the local immune response. IL-$32{\gamma}TG$ increased neutrophil influx into the initial foci of the primary injected site, and prolonged local cytokines and chemokines production. These results suggest that neutrophil recruitment in IL-$32{\gamma}TG$ occurred as a result of the local induction of chemokines but not the systemic inflammatory cytokine circulation. Together, our results suggest that IL-$32{\gamma}$ enhances an innate immune response against local infection but inhibits the spread of immune responses, leading to systemic immune disorder.

Systemic TM4SF5 overexpression in ApcMin/+ mice promotes hepatic portal hypertension associated with fibrosis

  • Joohyeong, Lee;Eunmi, Kim;Min-Kyung, Kang;Jihye, Ryu;Ji Eon, Kim;Eun-Ae, Shin;Yangie, Pinanga;Kyung-hee, Pyo;Haesong, Lee;Eun Hae, Lee;Heejin, Cho;Jayeon, Cheon;Wonsik, Kim;Eek-Hoon, Jho;Semi, Kim;Jung Weon, Lee
    • BMB Reports
    • /
    • 제55권12호
    • /
    • pp.609-614
    • /
    • 2022
  • Mutation of the gene for adenomatous polyposis coli (APC), as seen in ApcMin/+ mice, leads to intestinal adenomas and carcinomas via stabilization of β-catenin. Transmembrane 4 L six family member 5 (TM4SF5) is involved in the development of non-alcoholic fatty liver disease, fibrosis, and cancer. However, the functional linkage between TM4SF5 and APC or β-catenin has not been investigated for pathological outcomes. After interbreeding ApcMin/+ with TM4SF5-overexpressing transgenic (TgTM4SF5) mice, we explored pathological outcomes in the intestines and livers of the offspring. The intestines of 26-week-old dual-transgenic mice (ApcMin/+:TgTM4SF5) had intramucosal adenocarcinomas beyond the single-crypt adenomas in ApcMin/+ mice. Additional TM4SF5 overexpression increased the stabilization of β-catenin via reduced glycogen synthase kinase 3β (GSK3β) phosphorylation on Ser9. Additionally, the livers of the dualtransgenic mice showed distinct sinusoidal dilatation and features of hepatic portal hypertension associated with fibrosis, more than did the relatively normal livers in ApcMin/+ mice. Interestingly, TM4SF5 overexpression in the liver was positively linked to increased GSK3β phosphorylation (opposite to that seen in the colon), β-catenin level, and extracellular matrix (ECM) protein expression, indicating fibrotic phenotypes. Consistent with these results, 78-week-old TgTM4SF5 mice similarly had sinusoidal dilatation, immune cell infiltration, and fibrosis. Altogether, systemic overexpression of TM4SF5 aggravates pathological abnormalities in both the colon and the liver.