Browse > Article
http://dx.doi.org/10.4014/jmb.2009.09019

Alteration of Lung and Gut Microbiota in IL-13-Transgenic Mice Simulating Chronic Asthma  

Sohn, Kyoung-Hee (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine)
Baek, Min-gyung (Department of Public Health Sciences, Graduate School, Korea University)
Choi, Sung-Mi (Department of Public Health Sciences, Graduate School, Korea University)
Bae, Boram (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine)
Kim, Ruth Yuldam (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine)
Kim, Young-Chan (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine)
Kim, Hye-Young (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine)
Yi, Hana (Department of Public Health Sciences, Graduate School, Korea University)
Kang, Hye-Ryun (Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.12, 2020 , pp. 1819-1826 More about this Journal
Abstract
Increasing evidence suggests a potential role of microbial colonization in the inception of chronic airway diseases. However, it is not clear whether the lung and gut microbiome dysbiosis is coincidental or a result of mutual interaction. In this study, we investigated the airway microbiome in interleukin 13 (IL-13)-rich lung environment and related alterations of the gut microbiome. IL-13-overexpressing transgenic (TG) mice presented enhanced eosinophilic inflammatory responses and mucus production, together with airway hyperresponsiveness and subepithelial fibrosis. While bronchoalveolar lavage fluid and cecum samples obtained from 10-week-old IL-13 TG mice and their C57BL/6 wild-type (WT) littermates showed no significant differences in alpha diversity of lung and gut microbiome, they presented altered beta diversity in both lung and gut microbiota in the IL-13 TG mice compared to the WT mice. Lung-specific IL-13 overexpression also altered the composition of the gut as well as the lung microbiome. In particular, IL-13 TG mice showed an increased proportion of Proteobacteria and Cyanobacteria and a decreased amount of Bacteroidetes in the lungs, and depletion of Firmicutes and Proteobacteria in the gut. The patterns of polymicrobial interaction within the lung microbiota were different between WT and IL-13 TG mice. For instance, in IL-13 TG mice, lung Mesorhizobium significantly affected the alpha diversity of both lung and gut microbiomes. In summary, chronic asthma-like pathologic changes can alter the lung microbiota and affect the gut microbiome. These findings suggest that the lung-gut microbial axis might actually work in asthma.
Keywords
Interleukin-13; asthma; microbiota; gastrointestinal microbiome; microbial interactions;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wenzel SE. 2012. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18: 716-25.   DOI
2 Wynn TA. 2003. IL-13 effector functions. Annu. Rev. Immunol. 21: 425-456.   DOI
3 Ingram JL, Kraft M. 2012. IL-13 in asthma and allergic disease: asthma phenotypes and targeted therapies. J. Allergy Clin. Immunol. 130: 829-842.   DOI
4 Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, et al. 1999. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest. 103: 779-788.   DOI
5 Liu AH. 2015. Revisiting the hygiene hypothesis for allergy and asthma. J. Allergy Clin. Immunol. 136: 860-865.   DOI
6 Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166.   DOI
7 Wypych TP, Marsland BJ. 2018. Antibiotics as instigators of microbial dysbiosis: implications for asthma and allergy. Trends Immunol. 39: 697-711.   DOI
8 Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, et al. 2015. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe. 17: 704-715.   DOI
9 Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493.   DOI
10 Herbst T, Sichelstiel A, Schar C, Yadava K, Burki K, Cahenzli J, et al. 2011. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 184: 198-205.   DOI
11 Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. 2012. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13: 440-447.   DOI
12 Karimi K, Inman MD, Bienenstock J, Forsythe P. 2009. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am. J. Respir. Crit. Care Med. 179: 186-193.   DOI
13 MacSharry J, O'Mahony C, Shalaby KH, Sheil B, Karmouty-Quintana H, Shanahan F, et al. 2012. Immunomodulatory effects of feeding with Bifidobacterium longum on allergen-induced lung inflammation in the mouse. Pulm. Pharmacol. Ther. 25: 325-334.   DOI
14 Harb H, Van Tol E, Heine H, Braaksma M, Gross G, Overkamp K, et al. 2013. Neonatal supplementation of processed supernatant from Lactobacillus rhamnosus GG improves allergic airway inflammation in mice later in life. Clin. Exp. Allergy 43: 353-364.   DOI
15 MacSharry J, O'Mahony C, Shalaby KH, Sheil B, Karmouty-Quintana H, Shanahan F, et al. 2012. Immunomodulatory effects of feeding with Bifidobacterium longum on allergen-induced lung inflammation in the mouse. Pulm. Pharmacol. Ther. 25: 325-334.   DOI
16 Zhang B, An J, Shimada T, Liu S, Maeyama K. 2012. Oral administration of Enterococcus faecalis FK-23 suppresses Th17 cell development and attenuates allergic airway responses in mice. Int. J. Mol. Med. 30: 248-254.   DOI
17 Marsland BJ, Trompette A, Gollwitzer ES. 2015. The gut-lung axis in respiratory disease. Ann. Am. Thorac. Soc. 12: S150-S156.
18 Budden KF, Gellatly SL, Wood DL, Cooper MA, Morrison M, Hugenholtz P, et al. 2017. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 15: 55-63.   DOI
19 Zheng T, Zhu Z, Wang Z, Homer RJ, Ma B, Riese RJ, Jr., et al. 2000. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106: 1081-1093.   DOI
20 Ai C, Zhang Q, Ren C, Wang G, Liu X, Tian F, et al. 2014. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 9: e109461.   DOI
21 Zhu Z, Ma B, Zheng T, Homer RJ, Lee CG, Charo IF, et al. 2002. IL-13-induced chemokine responses in the lung: role of CCR2 in the pathogenesis of IL-13-induced inflammation and remodeling. J. Immunol. 168: 2953-2962.   DOI
22 Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: 1-18.
23 Sverrild A, Kiilerich P, Brejnrod A, Pedersen R, Porsbjerg C, Bergqvist A, et al. 2017. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome. J. Allergy Clin. Immunol. 140: 407-417.   DOI
24 Wills-Karp M. 2004. Interleukin-13 in asthma pathogenesis. Immunol. Rev. 202: 175-190.   DOI
25 Takayama G, Arima K, Kanaji T, Toda S, Tanaka H, Shoji S, et al. 2006. Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J. Allergy Clin. Immunol. 118: 98-104.   DOI
26 Huang YJ. 2013. Asthma microbiome studies and the potential for new therapeutic strategies. Curr. Allergy Asthma. Rep. 13: 453-461.   DOI
27 Yang HJ, LoSavio PS, Engen PA, Naqib A, Mehta A, Kota R, et al. 2018. Association of nasal microbiome and asthma control in patients with chronic rhinosinusitis. Clin. Exp. Allergy 48: 1744-1747.   DOI
28 Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al. 2018. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. USA 115: E11951-E11960.   DOI
29 Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J. Allergy Clin. Immunol. 107: 129-134.   DOI
30 Russell SL, Gold MJ, Willing BP, Thorson L, McNagny KM, Finlay BB. 2013. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma. Gut Microbes 4: 158-164.   DOI
31 Li L, Fang Z, Liu X, Hu W, Lu W, Lee Y-k, et al. 2020. Lactobacillus reuteri attenuated allergic inflammation induced by HDM in the mouse and modulated gut microbes. PLoS One 15: e0231865.   DOI
32 Fujimura KE, Sitarik AR, Havstad S, Lin DL, Levan S, Fadrosh D, et al. 2016. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22: 1187-1191.   DOI
33 Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, et al. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 108: 5354-5359.   DOI
34 Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54: 2325-2340.   DOI
35 Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K, et al. 2007. Childhood asthma after bacterial colonization of the airway in neonates. N. Engl. J. Med. 357: 1487-1495.   DOI
36 Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336: 489-493.   DOI
37 Barfod KK, Roggenbuck M, Hansen LH, Schjorring S, Larsen ST, Sorensen SJ, et al. 2013. The murine lung microbiome in relation to the intestinal and vaginal bacterial communities. BMC Microbiol. 13: 303.   DOI
38 McAleer JP, Kolls JK. 2018. Contributions of the intestinal microbiome in lung immunity. Eur. J. Immunol. 48: 39-49.   DOI
39 Cooke KR, Hill GR, Gerbitz A, Kobzik L, Martin TR, Crawford JM, et al. 2000. Hyporesponsiveness of donor cells to lipopolysaccharide stimulation reduces the severity of experimental idiopathic pneumonia syndrome: potential role for a gut-lung axis of inflammation. J. Immunol. 165: 6612-6619.   DOI
40 Sze MA, Tsuruta M, Yang S-WJ, Oh Y, Man SP, Hogg JC, et al. 2014. Changes in the bacterial microbiota in gut, blood, and lungs following acute LPS instillation into mice lungs. PLoS One 9: e111228.   DOI
41 Thorburn AN, McKenzie CI, Shen S, Stanley D, Macia L, Mason LJ, et al. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320.   DOI
42 Bradley CP, Teng F, Felix KM, Sano T, Naskar D, Block KE, et al. 2017. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe. 22: 697-704. e694.   DOI
43 Yazar A, Atis S, Konca K, Pata C, Akbay E, Calikoglu M, et al. 2001. Respiratory symptoms and pulmonary functional changes in patients with irritable bowel syndrome. Am. J. Gastroenterol. 96: 1511-1516.   DOI
44 Kuenzig ME, Bishay K, Leigh R, Kaplan GG, Benchimol EI, Crowdscreen SR review Team. 2018. Co-occurrence of asthma and the inflammatory bowel diseases: a systematic review and meta-analysis. Clin. Transl. Gastroenterol. 9: 188.   DOI
45 Vieira WA, Pretorius E. 2010. The impact of asthma on the gastrointestinal tract (GIT). J. Asthma Allergy 3: 123-130.   DOI
46 Marta L, Ana A, Solange O. 2014. Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus? Microbiol. Res. 20: 2-17.