Systemic TM4SF5 overexpression in ApcMin/+ mice promotes hepatic portal hypertension associated with fibrosis |
Joohyeong, Lee
(Department of Pharmacy College of Pharmacy, Seoul National University)
Eunmi, Kim (Department of Pharmacy College of Pharmacy, Seoul National University) Min-Kyung, Kang (Department of Pharmacy College of Pharmacy, Seoul National University) Jihye, Ryu (Department of Pharmacy College of Pharmacy, Seoul National University) Ji Eon, Kim (Department of Pharmacy College of Pharmacy, Seoul National University) Eun-Ae, Shin (Department of Pharmacy College of Pharmacy, Seoul National University) Yangie, Pinanga (Department of Pharmacy College of Pharmacy, Seoul National University) Kyung-hee, Pyo (Department of Pharmacy College of Pharmacy, Seoul National University) Haesong, Lee (Department of Pharmacy College of Pharmacy, Seoul National University) Eun Hae, Lee (Department of Pharmacy College of Pharmacy, Seoul National University) Heejin, Cho (Department of Pharmacy College of Pharmacy, Seoul National University) Jayeon, Cheon (Department of Pharmacy College of Pharmacy, Seoul National University) Wonsik, Kim (Department of Pharmacy College of Pharmacy, Seoul National University) Eek-Hoon, Jho (Department of Life Science, University of Seoul) Semi, Kim (Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology) Jung Weon, Lee (Department of Pharmacy College of Pharmacy, Seoul National University) |
1 | Sveen A, Kopetz S and Lothe RA (2020) Biomarker-guided therapy for colorectal cancer: strength in complexity. Nat Rev Clin Oncol 17, 11-32 DOI |
2 | Wang F, Breslin SJP and Qiu W (2021) Novel oncogenes and tumor suppressor genes in hepatocellular carcinoma. Liver Res 5, 195-203 DOI |
3 | Lee SA, Lee SY, Cho IH et al (2008) Tetraspanin TM4SF5 mediates loss of contact inhibition through epithelial-mesenchymal transition in human hepatocarcinoma. J Clin Invest 118, 1354-1366 |
4 | Ahn H-M, Ryu J, Song JM et al (2017) Anti-cancer activity of novel TM4SF5-targeting antibodies through TM4SF5 neutralization and immune cell-mediated cytotoxicity. Theranostics 7, 594-613 DOI |
5 | Ryu J, Kim E, Kang M-K et al (2021) Differential TM4SF5-mediated SIRT1 modulation and metabolic signaling in nonalcoholic steatohepatitis progression. J Pathol 253, 55-67 DOI |
6 | Kang M, Jeong SJ, Park SY et al (2012) Antagonistic regulation of transmembrane 4 L6 family member 5 attenuates fibrotic phenotypes in CCl4 -treated mice. FEBS J 279, 625-635 DOI |
7 | Sun H, Kim E, Ryu J et al (2021) TM4SF5-mediated liver malignancy involves NK cell exhaustion-like phenotypes. Cell Mol Life Sci 79, 49 |
8 | Ren J, Sui H, Fang F, Li Q and Li B (2019) The application of ApcMin/+ mouse model in colorectal tumor researches. J Cancer Res Clin Oncol 145, 1111-1122 DOI |
9 | Shih SC, Zukauskas A, Li D et al (2009) The L6 protein TM4SF1 is critical for endothelial cell function and tumor angiogenesis. Cancer Res 69, 3272-3277 DOI |
10 | Lee JW (2015) Transmembrane 4 L six family member 5 (TM4SF5)-mediated epithelial-mesenchymal transition in liver diseases. Int Rev Cell Mol Biol 319, 141-163 DOI |
11 | Powell SM, Zilz N, Beazer-Barclay Y et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359, 235-237 DOI |
12 | Yamada Y and Mori H (2007) Multistep carcinogenesis of the colon in Apc(Min/+) mouse. Cancer Sci 98, 6-10 DOI |
13 | Grill JI, Herbst A, Brandl L et al (2015) Inactivation of Itf2 promotes intestinal tumorigenesis in Apc(Min/+) mice. Biochem Biophys Res Commun 461, 249-253 DOI |
14 | Jung YS and Park JI (2020) Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med 52, 183-191 DOI |
15 | Lee H, Kim E, Shin EA et al (2022) Crosstalk between TM4SF5 and GLUT8 regulates fructose metabolism in hepatic steatosis. Mol Metab 58, 101451 |
16 | McConnell M and Iwakiri Y (2018) Biology of portal hypertension. Hepatol Int 12, 11-23 DOI |
17 | Kim S, Cho CY, Lee D et al (2018) CD133-induced TM4SF5 expression promotes sphere growth via recruitment and blocking of protein tyrosine phosphatase receptor type F (PTPRF). Cancer Lett 438, 219-231 DOI |
18 | Shakoori A, Mai W, Miyashita K et al (2007) Inhibition of GSK-3β activity attenuates proliferation of human colon cancer cells in rodents. Cancer Sci 98, 1388-1393 DOI |
19 | Pal K, Cao Y, Gaisina IN et al (2014) Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer. Mol Cancer Ther 13, 285-296 DOI |
20 | Garcea G, Manson MM, Neal CP et al (2007) Glycogen synthase kinase-3β; a new target in pancreatic cancer? Curr Cancer Drug Targets 7, 209-215 DOI |
21 | Noe O, Filipiak L, Royfman R et al (2021) Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 15, 534 |
22 | Ma C, Wang J, Gao Y et al (2007) The role of glycogen synthase kinase 3β in the transformation of epidermal cells. Cancer Res 67, 7756-7764 DOI |
23 | Farago M, Dominguez I, Landesman-Bollag E et al (2005) Kinase-inactive glycogen synthase kinase 3β promotes Wnt signaling and mammary tumorigenesis. Cancer Res 65, 5792-5801 DOI |
24 | Zheng H, Saito H, Masuda S, Yang X and Takano Y (2007) Phosphorylated GSK3β-ser9 and EGFR are good prognostic factors for lung carcinomas. Anticancer Res 27, 3561-569 |
25 | Choi S, Lee S-A, Kwak TK et al (2009) Cooperation between integrin α5 and tetraspan TM4SF5 regulates VEGF-ediated angiogenic activity. Blood 113, 1845-1855 DOI |
26 | Lee SA, Kim TY, Kwak TK et al (2010) Transmembrane 4 L six family member 5 (TM4SF5) enhances migration and invasion of hepatocytes for effective metastasis. J Cell Biochem 111, 59-66 |
27 | Jung O, Choi YJ, Kwak TK et al (2013) The COOH-terminus of TM4SF5 in hepatoma cell lines regulates c-Src to form invasive protrusions via EGFR Tyr845 phosphorylation. Biochim Biophys Acta 1833, 629-642 DOI |
28 | Lee D and Lee JW (2015) Self-renewal and circulating capacities of metastatic hepatocarcinoma cells required for collaboration between TM4SF5 and CD44. BMB Rep 48, 127-128 DOI |
29 | Juanes MA (2020) Cytoskeletal control and Wnt signaling-PC's dual contributions in stem cell division and colorectal cancer. Cancers (Basel) 12, 3811 |
30 | Barzegar Behrooz A, Syahir A and Ahmad S (2018) CD133: beyond a cancer stem cell biomarker. J Drug Target 27, 257-269 DOI |
31 | Boivin D, Labbe D, Fontaine N et al (2009) The stem cell marker CD133 (prominin-1) is phosphorylated on cytoplasmic tyrosine-828 and tyrosine-852 by Src and Fyn tyrosine kinases. Biochemistry 48, 3998-4007 DOI |
32 | Ma S (2013) Biology and clinical implications of CD133(+) CD133(+) liver cancer stem cells. Exp Cell Res 319, 126-132 DOI |
33 | Song HE LY, Kim E, Cho CY et al (2021) N-terminus-independent activation of c-Src via binding to a tetraspan (in) TM4SF5 in hepatocellular carcinoma is abolished by the TM4SF5 C-terminal peptide application. Theranostics 11, 8092-8111 DOI |
34 | Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP and Jove R (1998) Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol Cell Biol 18, 2545-2552 DOI |
35 | Wei Y, Jiang Y, Zou F et al (2013) Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci U S A 110, 6829-6834 DOI |
36 | Ko D, Kim E, Shin EA et al (2022) Therapeutic effects of TM4SF5-targeting chimeric and humanized monoclonal antibodies in hepatocellular and colon cancer models. Mol Ther Oncolytics 24, 452-466 DOI |
37 | Kang M, Choi S, Jeong SJ et al (2012) Cross-talk between TGFβ1 and EGFR signalling pathways induces TM4SF5 expression and epithelial-mesenchymal transition. Biochem J 443, 691-700 DOI |
38 | Lee D, Na J, Ryu J et al (2015) Interaction of tetraspan (in) TM4SF5 with CD44 promotes self-renewal and circulating capacities of hepatocarcinoma cells. Hepatology 61, 1978-1997 DOI |
39 | Kim E, Um H, Park J et al (2021) TM4SF5-dependent cross-talk between hepatocytes and macrophages to reprogram the inflammatory environment. Cell Rep 37, 110018 |