• Title/Summary/Keyword: transgenic mice

Search Result 279, Processing Time 0.024 seconds

Application of Antimicrobial Peptide LL-37 as an Adjuvant for Middle East Respiratory Syndrome-Coronavirus Antigen Induces an Efficient Protective Immune Response Against Viral Infection After Intranasal Immunization

  • Ju Kim;Ye Lin Yang;Yongsu Jeong;Yong-Suk Jang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.41.1-41.16
    • /
    • 2022
  • The human antimicrobial peptide LL-37 has chemotactic and modulatory activities in various immune cells, including dendritic cells. Because of its characteristics, LL-37 can be considered an adjuvant for vaccine development. In this study, we confirmed the possible adjuvant activity of LL-37 in mucosal vaccine development against Middle East respiratory syndrome-coronavirus (MERS-CoV) by means of intranasal immunization in C57BL/6 and human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice. Intranasal immunization using the receptor-binding domain (RBD) of MERS-CoV spike protein (S-RBD) recombined with LL-37 (S-RBD-LL-37) induced an efficient mucosal IgA and systemic IgG response with virus-neutralizing activity, compared with S-RBD. Ag-specific CTL stimulation was also efficiently induced in the lungs of mice that had been intranasally immunized with S-RBD-LL-37, compared with S-RBD. Importantly, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to reduced immune cell infiltration into the lungs after infection with MERS-CoV. Finally, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to enhanced protective efficacy, with increased survival and reduced body weight loss after challenge infection with MERS-CoV. Collectively, these results suggest that S-RBD-LL-37 is an effective intranasal vaccine candidate molecule against MERS-CoV infection.

Effect of the Flavonoid Luteolin for Dextran Sodium Sulfate-induced Colitis in NF-${\kappa}B^{EGFP}$ Transgenic Mice (Dextran Sodium Sulfate 유발 장염 모델에서 루테올린의 치료효과)

  • Jang, Byung-Ik
    • Journal of Yeungnam Medical Science
    • /
    • v.23 no.1
    • /
    • pp.26-35
    • /
    • 2006
  • Background: Luteolin, a flavone found in various Chinese herbal medicines is known to possess anti-inflammatory properties through its ability to inhibit various proinflammatory signaling pathways including NF-${\kappa}B$ and p38 MAPK. In this study, we investigated the potential therapeutic effect of luteolin on dextran sodium sulfate (DSS)-induced colitis. Materials and Methods: We used a transgenic mouse model expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-${\kappa}B$ $cis$-elements. C57BL/6 NF-${\kappa}B^{EGFP}$ mice received 2.5% DSS in their drinking water for six days in combination with daily luteolin administration (1mg/kg body weight, 0.1ml vol, intragastric) or vehicle. NF-${\kappa}B$ activity was assessed macroscopically with a Charge-Coupled Device (CCD) camera and microscopically by confocal analysis. Results: A significant increase in the Disease Activity Index (DAI), histological score (p<0.05), IL-12 p40 secretion in colonic stripe culture (p<0.05) and EGFP expression was observed in luteolin and/or DSS-treated mice compared to water-treated mice. Interestingly, a trend toward a worse colitis (DAI, IL-12p40) was observed in luteolin-treated mice compared to non-treated DSS-exposed mice. In addition, EGFP expression (NF-${\kappa}B$ activity) strongly increased in the luteolin-treated mice compared to control mice. Confocal microscopy showed that EGFP positive cells were primarily lamina propria immune cells. Conclusions: These results suggest that luteolin is not a therapeutic alternative for intestinal inflammatory disorders derived for primary defects in barrier function. Thus, therapeutic intervention targeting these signaling pathways should be viewed with caution.

  • PDF

The roles of FADD in extrinsic apoptosis and necroptosis

  • Lee, Eun-Woo;Seo, Jin-Ho;Jeong, Man-Hyung;Lee, Sang-Sik;Song, Jae-Whan
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.496-508
    • /
    • 2012
  • Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.

Use of Transgenic and Mutant Animal Models in the Study of Heterocyclic Amine-induced Mutagenesis and Carcinogenesis

  • Dashwood, Roderick H.
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Heterocyclic amines (HCAs) are potent mutagens generated during the cooking of meat and fish, and several of these compounds produce tumors in conventional experimental animals. During the past 5 years or so, HCAs have been tested in a number of novel in vivo murine models, including the following: lacZ, lacI, cII, c-myc/lacZ, rpsL, and $gpt{\Delta}$ transgenics, $XPA^{-/-}$, $XPC^{-/-}$, $Msh2^{+/-}$, $Msh2^{-/-}$ and $p53^{+/-}$ knock-outs, Apc mutant mice ($Apc^{{\Delta}716}$, $Apc^{1638N}$, $Apc^{min}$), and $A33^{{\Delta}N{\beta}-cat}$ knock-in mice. Several of these models have provided insights into the mutation spectra induced in vivo by HCAs in target and non-target organs for tumorigenesis, as well as demonstrating enhanced susceptibility to HCA-induced tumors and preneoplastic lesions. This review describes several of the more recent reports in which novel animal models were used to examine HCA-induced mutagenesis and carcinogenesis in vivo, including a number of studies which assessed the inhibitory activities of chemopreventive agents such as 1,2-dithiole-3-thione, conjugated linoleic acids, tea, curcumin, chlorophyllin-chitosan, and sulindac.

Spinosin Attenuates Alzheimer's Disease-Associated Synaptic Dysfunction via Regulation of Plasmin Activity

  • Cai, Mudan;Jung, Inho;Kwon, Huiyoung;Cho, Eunbi;Jeon, Jieun;Yun, Jeanho;Lee, Young Choon;Kim, Dong Hyun;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Hippocampal synaptic dysfunction is a hallmark of Alzheimer's disease (AD). Many agents regulating hippocampal synaptic plasticity show an ameliorative effect on AD pathology, making them potential candidates for AD therapy. In the present study, we investigated spinosin as a regulating agent of synaptic plasticity in AD. Spinosin attenuated amyloid β (Aβ)-induced long-term potentiation (LTP) impairment, and improved plasmin activity and protein level in the hippocampi of 5XFAD mice, a transgenic AD mouse model. Moreover, the effect of spinosin on hippocampal LTP in 5XFAD mice was prevented by 6-aminocaproic acid, a plasmin inhibitor. These results suggest that spinosin improves synaptic function in the AD hippocampus by regulating plasmin activity.

Soluble isocitrate dehydrogenase plays a key role in obesity and hyperlipidemia

  • Koh, Ho-Jin;Lee, Su-Min;Huh, Tae-Lin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.5-7
    • /
    • 2003
  • NADPH is an essential co-factor for fat and cholesterol biosynthesis. However, the role of cytosolic NADP$\^$+/-dependent isocitrate dehydrogenase (IDPc), a putative NADPH producer, in the control of the fat and cholesterol metabolism has not been assessed. Here we report that increased or decreased IDPc expression in 3T3-Ll fat cells promoted or retarded adipogenesis, respectively. Furthermore, overexpression of IDPc in transgenic mice exhibited fatty liver, hypertriglyceridemia, hypercholesterolemia and obesity by increasing NADPH production leading to subsequent stimulation of acetyl-coenzyme A and malonyl-coenzyme A consumption. In contrast, administrations of a synthetic IDPc inhibitor, DAl1004, to ob/ob mice effectively reduced body weight with lowering cholesterol and triglyceride levels. In addition, a positive relationship (${\gamma}$ = 0.69, $\rho$<0.0l) between plasma IDPc activity and body mass indexes was observed in 98 randomly-selected human volunteers. Our findings strongly indicate that NADPH produced by IDPc plays an important role in controlling body fat and lipid biosynthesis.

  • PDF

Development of Cost-Effective Platform for Tracking and Analysis of Animal Ambulatory Patterns

  • Kwon, Jeonghoon;Park, Hong Ju;Joo, Segyeong;Huh, Soo-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.82-86
    • /
    • 2014
  • This paper reports the development of a platform for tracking and analysis of animal locomotion. The platform is composed of a commercial webcam, a metal stand for the webcam, and a plastic bathtub as a cage. Using it, researchers can track and analyze an animal's movement within the plastic bathtub's dimensions of $100cm{\times}100cm{\times}55cm$ in a cost-effective manner. After recording the locomotion of an animal with $1920{\times}1080$ resolution at a rate of 30 frames per second, finding the position of the animal in each frame and analyzing the ambulation pattern were executed with custom software. To evaluate the performance of the platform, movements of imprinting control region mice and transgenic mice were recorded and analyzed. The analysis successfully compared velocity, moving pattern, and total moving distance for the two mouse groups. In addition, the developed platform can be used not only in simple motion analysis but also in various experimental conditions, such as a water maze, by easy customization of the platform. Such a simple and cost-effective platform yields a powerful tool for animal ambulatory analysis.

The Effects of Treadmill Exercise on Cognitive Performance, Brain Mitochondrial Aβ-42, Cytochrome c, SOD-1, 2 and Sirt-3 Protein Expression in Mutant (N141I) Presenilin-2 Transgenic Mice of Alzheimer's Disease (트레드밀 운동이 mutant (N141I) presenilin-2 유전자를 이식한 알츠하이머질환 모델 생쥐 뇌의 Aβ-42, cytochrome c, SOD-1, 2와 Sirt-3 단백질 발현에 미치는 영향)

  • Koo, Jung-Hoon;Eum, Hyun-Sub;Kang, Eun-Bum;Kwon, In-Su;Yeom, Dong-Cheol;An, Gil-Young;Oh, Yoo-Sung;Baik, Young-Soo;Cho, In-Ho;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.444-452
    • /
    • 2010
  • The purpose of this study was to investigate the effects of treadmill exercise on $A{\beta}$-42, cytochrome c, SOD-1, 2 and Sirt-3 protein expressions in brain cytosol and mitochondria in mutant (N141I) presenilin-2 transgenic mice with Alzheimer's disease (AD). The mice were divided into four groups (Non-Tg-sedentary, n=5; Non-Tg treadmill exercise, n=5; Tg-sedentary, n=5; Tg treadmill exercise, n=5). To evaluate the neuroprotective effect of treadmill exercise, Non-Tg and Tg mice were subjected to exercise training on a treadmill for 12 wk, after which their brain cytosol and mitochondria were evaluated to determine whether any changes in the cognitive performance, $A{\beta}$-42 protein, cytochrome c protein, anti-oxidant enzymes (SOD-1, SOD-2) and Sirt-3 protein had occurred. The results indicated that treadmill exercise resulted in amelioration in cognitive deficits of Tg mice. In addition, the expressions of mitochondrial $A{\beta}$-42 and cytosolic cytochrome c protein were decreased in the brains of Tg mice after treadmill exercise, whereas antioxidant enzymes, SOD-l and SOD-2 were significantly increased in response to treadmill exercise. Furthermore, treadmill exercise significantly increased the expression of Sirt-3 protein in Non-Tg and Tg mice. Taken together, these results suggest that treadmill exercise is a simple behavioral intervention which can sufficiently improve cognitive performance and inhibit $A{\beta}$-induced oxidative stress in AD.

MPTP-induced vulnerability of dopamine neurons in A53T α-synuclein overexpressed mice with the potential involvement of DJ-1 downregulation

  • Lee, Seongmi;Oh, Seung Tack;Jeong, Ha Jin;Pak, Sok Cheon;Park, Hi-Joon;Kim, Jongpil;Cho, Hyun-seok;Jeon, Songhee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.625-632
    • /
    • 2017
  • Familial Parkinson's disease (PD) has been linked to point mutations and duplication of the ${\alpha}$-synuclein (${\alpha}$-syn) gene. Mutant ${\alpha}$-syn expression increases the vulnerability of neurons to exogenous insults. In this study, we developed a new PD model in the transgenic mice expressing mutant hemizygous (hemi) or homozygous (homo) A53T ${\alpha}$-synuclein (${\alpha}$-syn Tg) and their wildtype (WT) littermates by treatment with sub-toxic (10 mg/kg, i.p., daily for 5 days) or toxic (30 mg/kg, i.p., daily for 5 days) dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Tyrosine hydroxylase and Bcl-2 levels were reduced in the ${\alpha}$-syn Tg but not WT mice by sub-toxic MPTP injection. In the adhesive removal test, time to remove paper was significantly increased only in the homo ${\alpha}$-syn Tg mice. In the challenging beam test, the hemi and homo ${\alpha}$-syn Tg mice spent significantly longer time to traverse as compared to that of WT group. In order to find out responsible proteins related with vulnerability of mutant ${\alpha}$-syn expressed neurons, DJ-1 and ubiquitin enzyme expressions were examined. In the SN, DJ-1 and ubiquitin conjugating enzyme, UBE2N, levels were significantly decreased in the ${\alpha}$-syn Tg mice. Moreover, A53T ${\alpha}$-syn overexpression decreased DJ-1 expression in SH-SY5Y cells. These findings suggest that the vulnerability to oxidative injury such as MPTP of A53T ${\alpha}$-syn mice can be explained by downregulation of DJ-1.

Effects of long-term tubular HIF-2α overexpression on progressive renal fibrosis in a chronic kidney disease model

  • Dal-Ah Kim;Mi-Ran Lee;Hyung Jung Oh;Myong Kim;Kyoung Hye Kong
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.196-201
    • /
    • 2023
  • Renal fibrosis is the final manifestation of chronic kidney disease (CKD) regardless of etiology. Hypoxia-inducible factor-2 alpha (HIF-2α) is an important regulator of chronic hypoxia, and the late-stage renal tubular HIF-2α activation exerts protective effects against renal fibrosis. However, its specific role in progressive renal fibrosis remains unclear. Here, we investigated the effects of the long-term tubular activation of HIF-2α on renal function and fibrosis, using in vivo and in vitro models of renal fibrosis. Progressive renal fibrosis was induced in renal tubular epithelial cells (TECs) of tetracycline-controlled HIF-2α transgenic (Tg) mice and wild-type (WT) controls through a 6-week adenine diet. Tg mice were maintained on doxycycline (DOX) for the diet period to induce Tg HIF-2α expression. Primary TECs isolated from Tg mice were treated with DOX (5 ㎍/ml), transforming growth factor-β1 (TGF-β1) (10 ng/ml), and a combination of both for 24, 48, and 72 hr. Blood was collected to analyze creatinine (Cr) and blood urea nitrogen (BUN) levels. Pathological changes in the kidney tissues were observed using hematoxylin and eosin, Masson's trichrome, and Sirius Red staining. Meanwhile, the expression of fibronectin, E-cadherin and α-smooth muscle actin (α-SMA) and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) was observed using western blotting. Our data showed that serum Cr and BUN levels were significantly lower in Tg mice than in WT mice following the adenine diet. Moreover, the protein levels of fibronectin and E-cadherin and the phosphorylation of p38 MAPK were markedly reduced in the kidneys of adenine-fed Tg mice. These results were accompanied by attenuated fibrosis in Tg mice following adenine administration. Consistent with these findings, HIF-2α overexpression significantly decreased the expression of fibronectin in TECs, whereas an increase in α-SMA protein levels was observed after TGF-β1 stimulation for 72 hr. Taken together, these results indicate that long-term HIF-2α activation in CKD may inhibit the progression of renal fibrosis and improve renal function, suggesting that long-term renal HIF-2α activation may be used as a novel therapeutic strategy for the treatment of CKD.