Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.076

Spinosin Attenuates Alzheimer's Disease-Associated Synaptic Dysfunction via Regulation of Plasmin Activity  

Cai, Mudan (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Jung, Inho (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Kwon, Huiyoung (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Cho, Eunbi (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Jeon, Jieun (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Yun, Jeanho (Department of Biochemistry, College of Medicine, Dong-A University)
Lee, Young Choon (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Kim, Dong Hyun (Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University)
Ryu, Jong Hoon (Department of Life and Nanopharmaceutical Science, Kyung Hee University)
Publication Information
Biomolecules & Therapeutics / v.28, no.2, 2020 , pp. 131-136 More about this Journal
Abstract
Hippocampal synaptic dysfunction is a hallmark of Alzheimer's disease (AD). Many agents regulating hippocampal synaptic plasticity show an ameliorative effect on AD pathology, making them potential candidates for AD therapy. In the present study, we investigated spinosin as a regulating agent of synaptic plasticity in AD. Spinosin attenuated amyloid β (Aβ)-induced long-term potentiation (LTP) impairment, and improved plasmin activity and protein level in the hippocampi of 5XFAD mice, a transgenic AD mouse model. Moreover, the effect of spinosin on hippocampal LTP in 5XFAD mice was prevented by 6-aminocaproic acid, a plasmin inhibitor. These results suggest that spinosin improves synaptic function in the AD hippocampus by regulating plasmin activity.
Keywords
Spinosin; Alzheimer's disease; Plasmin, LTP; 5XFAD;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barker, R., Love, S. and Kehoe, P. G. (2010) Plasminogen and plasmin in Alzheimer's disease. Brain Res. 1355, 7-15.   DOI
2 Castello, N. A., Nguyen, M. H., Tran, J. D., Cheng, D., Green, K. N. and LaFerla, F. M. (2014) 7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss. PLoS ONE 9, e91453.   DOI
3 Criscuolo, C., Fabiani, C., Bonadonna, C., Origlia, N. and Domenici, L. (2015) BDNF prevents amyloid-dependent impairment of LTP in the entorhinal cortex by attenuating p38 MAPK phosphorylation. Neurobiol. Aging 36, 1303-1309.   DOI
4 de Pins, B., Cifuentes-Diaz, C., Farah, A. T., Lopez-Molina, L., Montalban, E., Sancho-Balsells, A., Lopez, A., Gines, S., Delgado-Garcia, J. M., Alberch, J., Gruart, A., Girault, J. A. and Giralt, A. (2019) Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease. J. Neurosci. 39, 2441-2458.
5 Dotti, C. G., Galvan, C. and Ledesma, M. D. (2004) Plasmin deficiency in Alzheimer's disease brains: causal or casual? Neurodegener. Dis. 1, 205-212.   DOI
6 Draxler, D. F., Sashindranath, M. and Medcalf, R. L. (2017) Plasmin: a modulator of immune function. Semin. Thromb. Hemost. 43, 143-153.   DOI
7 ElAli, A., Bordeleau, M., Theriault, P., Filali, M., Lampron, A. and Rivest, S. (2016) Tissue-plasminogen activator attenuates Alzheimer's disease-related pathology development in APPswe/PS1 mice. Neuropsychopharmacology 41, 1297-1307.   DOI
8 Gao, L., Tian, M., Zhao, H. Y., Xu, Q. Q., Huang, Y. M., Si, Q. C., Tian, Q., Wu, Q. M., Hu, X. M., Sun, L. B., McClintock, S. M. and Zeng, Y. (2016) TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease. J. Neurochem. 136, 620-636.   DOI
9 Ittner, L. M. and Gotz, J. (2011) Amyloid-beta and tau--a toxic pas de deux in Alzheimer's disease. Nat. Rev. Neurosci. 12, 65-72.
10 Gray, K. and Ellis, V. (2008) Activation of pro-BDNF by the pericellular serine protease plasmin. FEBS Lett. 582, 907-910.   DOI
11 Guntupalli, S., Widagdo, J. and Anggono, V. (2016) Amyloid-${\beta}$-induced dysregulation of AMPA receptor trafficking. Neural Plast. 2016, 3204519.
12 Jacobsen, J. S., Comery, T. A., Martone, R. L., Elokdah, H., Crandall, D. L., Oganesian, A., Aschmies, S., Kirksey, Y., Gonzales, C., Xu, J., Zhou, H., Atchison, K., Wagner, E., Zaleska, M. M., Das, I., Arias, R. L., Bard, J., Riddell, D., Gardell, S. J., Abou-Gharbia, M., Robichaud, A., Magolda, R., Vlasuk, G. P., Bjornsson, T., Reinhart, P. H. and Pangalos, M. N. (2008) Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade. Proc. Natl. Acad. Sci. U.S.A. 105, 8754-8759.   DOI
13 Jin, M., Shepardson, N., Yang, T., Chen, G., Walsh, D. and Selkoe, D. J. (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc. Natl. Acad. Sci. U.S.A. 108, 5819-5824.   DOI
14 Lee, H. K., Takamiya, K., Han, J. S., Man, H., Kim, C. H., Rumbaugh, G., Yu, S., Ding, L., He, C., Petralia, R. S., Wenthold, R. J., Gallagher, M. and Huganir, R. L. (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112, 631-643.   DOI
15 Ko, S. Y., Lee, H. E., Park, S. J., Jeon, S. J., Kim, B., Gao, Q., Jang, D. S. and Ryu, J. H. (2015) Spinosin, a C-glucosylflavone, from Zizyphus jujuba var. spinosa ameliorates Abeta1-42 oligomer-induced memory impairment in mice. Biomol. Ther. (Seoul) 23, 156-164.   DOI
16 Krueger, S. R., Ghisu, G. P., Cinelli, P., Gschwend, T. P., Osterwalder, T., Wolfer, D. P. and Sonderegger, P. (1997) Expression of neuroserpin, an inhibitor of tissue plasminogen activator, in the developing and adult nervous system of the mouse. J. Neurosci. 17, 8984-8996.   DOI
17 Lasagna-Reeves, C. A., Castillo-Carranza, D. L., Sengupta, U., Guerrero-Munoz, M. J., Kiritoshi, T., Neugebauer, V., Jackson, G. R. and Kayed, R. (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci. Rep. 2, 700.   DOI
18 Lebeurrier, N., Liot, G., Lopez-Atalaya, J. P., Orset, C., Fernandez-Monreal, M., Sonderegger, P., Ali, C. and Vivien, D. (2005) The brain-specific tissue-type plasminogen activator inhibitor, neuroserpin, protects neurons against excitotoxicity both in vitro and in vivo. Mol. Cell. Neurosci. 30, 552-558.   DOI
19 Ledesma, M. D., Da Silva, J. S., Crassaerts, K., Delacourte, A., De Strooper, B. and Dotti, C. G. (2000) Brain plasmin enhances APP alpha-cleavage and Abeta degradation and is reduced in Alzheimer's disease brains. EMBO Rep. 1, 530-535.   DOI
20 Li, W. Y., Chong, S. S., Huang, E. Y. and Tuan, T. L. (2003) Plasminogen activator/plasmin system: a major player in wound healing? Wound Repair Regen. 11, 239-247.   DOI
21 Sappino, A. P., Madani, R., Huarte, J., Belin, D., Kiss, J. Z., Wohlwend, A. and Vassalli, J. D. (1993) Extracellular proteolysis in the adult murine brain. J. Clin. Invest. 92, 679-685.   DOI
22 Maren, S. and Baudry, M. (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol. Learn. Mem. 63, 1-18.   DOI
23 Ono, K., Condron, M. M. and Teplow, D. B. (2009) Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc. Natl. Acad. Sci. U.S.A. 106, 14745-14750.   DOI
24 Parameshwaran, K., Dhanasekaran, M. and Suppiramaniam, V. (2008) Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp. Neurol. 210, 7-13.   DOI
25 Park, H. J., Jung, I. H., Kwon, H., Yu, J., Jo, E., Kim, H., Park, S. J., Lee, Y. C., Kim, D. H. and Ryu, J. H. (2019) The ethanol extract of Zizyphus jujuba var. spinosa seeds ameliorates the memory deficits in Alzheimer's disease model mice. J. Ethnopharmacol. 233, 73-79.   DOI
26 Rodier, M., Prigent-Tessier, A., Bejot, Y., Jacquin, A., Mossiat, C., Marie, C. and Garnier, P. (2014) Exogenous t-PA administration increases hippocampal mature BDNF levels. plasmin- or NMDAdependent mechanism? PLoS ONE 9, e92416.   DOI
27 Schaller, J. and Gerber, S. S. (2011) The plasmin-antiplasmin system: structural and functional aspects. Cell. Mol. Life Sci. 68, 785-801.   DOI
28 Sengupta, U., Nilson, A. N. and Kayed, R. (2016) The role of amyloid-${\beta}$ oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6, 42-49.   DOI
29 Shergis, J. L., Ni, X., Sarris, J., Zhang, A. L., Guo, X., Xue, C. C., Lu, C. and Hugel, H. (2017) Ziziphus spinosa seeds for insomnia: a review of chemistry and psychopharmacology. Phytomedicine 34, 38-43.   DOI
30 Sevush, S. and Leve, N. (1993) Denial of memory deficit in Alzheimer's disease. Am. J. Psychiatry 150, 748-751.   DOI
31 Sutton, M. A. and Schuman, E. M. (2006) Dendritic protein synthesis, synaptic plasticity, and memory. Cell 127, 49-58.   DOI
32 Tucker, H. M., Kihiko-Ehmann, M., Wright, S., Rydel, R. E. and Estus, S. (2000) Tissue plasminogen activator requires plasminogen to modulate amyloid-beta neurotoxicity and deposition. J. Neurochem. 75, 2172-2177.   DOI
33 Arancibia, S., Silhol, M., Mouliere, F., Meffre, J., Hollinger, I., Maurice, T. and Tapia-Arancibia, L. (2008) Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol. Dis. 31, 316-326.   DOI
34 Van Nostrand, W. E. and Porter, M. (1999) Plasmin cleavage of the amyloid beta-protein: alteration of secondary structure and stimulation of tissue plasminogen activator activity. Biochemistry 38, 11570-11576.   DOI
35 Vassalli, J. D., Sappino, A. P. and Belin, D. (1991) The plasminogen activator/plasmin system. J. Clin. Invest. 88, 1067-1072.   DOI
36 Walsh, D. M., Klyubin, I., Fadeeva, J. V., Rowan, M. J. and Selkoe, D. J. (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem. Soc. Trans. 30, 552-557.   DOI
37 Alkjaersig, N., Fletcher, A. P. and Sherry, S. (1959) The mechanism of clot dissolution by plasmin. J. Clin. Invest. 38, 1086-1095.   DOI
38 Angelucci, F., Cechova, K., Prusa, R. and Hort, J. (2019) Amyloid beta soluble forms and plasminogen activation system in Alzheimer's disease: consequences on extracellular maturation of brain-derived neurotrophic factor and therapeutic implications. CNS Neurosci. Ther. 25, 303-313.   DOI
39 Backman, L., Small, B. J. and Fratiglioni, L. (2001) Stability of the preclinical episodic memory deficit in Alzheimer's disease. Brain 124, 96-102.   DOI
40 Baranello, R. J., Bharani, K. L., Padmaraju, V., Chopra, N., Lahiri, D. K., Greig, N. H., Pappolla, M. A. and Sambamurti, K. (2015) Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease. Curr. Alzheimer Res. 12, 32-46.   DOI