• Title/Summary/Keyword: transgenic crop

Search Result 256, Processing Time 0.023 seconds

Effect of Introducing Chitinase Gene on the Resistance of Tuber Mustard against White Mold

  • Ojaghian, Seyedmohammadreza;Wang, Ling;Xie, Guan-Lin
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.378-383
    • /
    • 2020
  • The objective of this research was introduction of chit42 to tuber mustard plants through Agrobacteriummediated transformation against white mold caused by Sclerotinia sclerotiorum. The binary plasmid pGisPEC1 was used in this study. Polymerase chain reaction analysis detected the transgene in 27 transformants with a transformation efficiency of 6.9%. Southern blot test was used to assess the copy number of transgene in tuber mustard plants. One, two, two, and two chit42-related bands were observed in the transformed lines TMB4, TMB7, TMB12, and TMB18, respectively. Enzymatic tests showed a significant increase in the activity of endochitinase in protein isolated from leaf tissues of chit42 transgenic 75-day tuber mustard lines. The pathogenicity of three pathogen isolates was tested on the leaves of transformed plans. The results of current study showed that expression of the gene chit42 in tuber mustard plants markedly reduced infection radius on the leaves 7 days after inoculation with the fungus.

Plant Defence Responses: Current Status and Future Exploitation

  • Yun, Byung-Wook;Gray J, Loake
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Plants have developed a sophisticated battery of defence responses to protect themselves against attempted pathogen ingress. Manipulation of these defence mechanisms may provide significant opportunities for crop improvement. While plant resistance genes have had a long service history in plant breeding, they possess significant limitations. Recent advances are now providing significant insights into strategies designed to increase the field durability of this class of genes. Hypersensitive cell death is a common feature underlying the deployment of plant defence responses against biographic pathogens. In contrast, necrotrophic pathogens actively kill plant cells. Recently, transgenic plants have been developed that either promote or suppress cell death, providing resistance against either biotrophic or necrotrophic pathogens respectively. Methyl-jasmonate is a key signalling molecule in the establishment of resistance against some fungal pathogens. Increasing the concentration of this molecule in plant cells has been shown to increase resistance against Botrytis cineria, without significantly imparting plant growth or development. Due to the multifarious infection strategies employed by plant pathogens, how-ever, it is unlikely a single commercial product will prove a panacea for global disease control. Future stategies will more likely entail an integrated disease management approach.

Principal methods to produce marker-free GM plants (무선발표지 형질전환 식물체 제조기술)

  • Woo, Hee-Jong;Shin, Kong-Sik;Lee, Ki-Jong;Kweon, Soon-Jong;Cho, Yong-Gu;Suh, Seok-Cheol
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.212-219
    • /
    • 2010
  • Selectable marker gene systems are vital for the development of transgenic plants, but the presence of selectable marker genes encoding antibiotic or herbicide resistance in genetically modified plants poses a number of problems. A lot of research results and various techniques have been developed to produce marker-free GM plants. The aim of this review is to describe the principal methods used for eliminating selectable marker genes to generate marker-free GM plants, concentrating on the three significant methods(co-transformation, site-specific recombinase-mediated excision, non-selected transformation) in several marker-free techniques.

Research on Tobacco Plant Diseases in Korea : An Overview (우리 나라 담배 병 연구의 어제와 오늘)

  • Kim, Jung-Hwa
    • Research in Plant Disease
    • /
    • v.8 no.2
    • /
    • pp.78-83
    • /
    • 2002
  • Tobacco diseases have not been recorded until 1900s in Korea, where tobacco plants were introduced at early 1700s. Practical researches on the disease have been conducted since mid 1960s. Major ten tobacco diseases were mosaic caused by tobacco mosaic virus·potato virus Y·cucumber mosaic virus, bacterial wilt, hollow stalk, wild fire caused by angular leaf spot strain, black shank, brown spot, powdery mildew and fusarium wilt. But their annual occurrences were varied according to changes of tobacco varieties and their cultivating practices. As no useful chemicals, several biological tactics have been developed to control the viral or bacterial diseases that give significant economic damages on sustainable crop yield, but not practicable to field farming condition yet. Transgenic tobacco plants containing foreign disease resistant genes have been developed by current bio-technology, but not released to farmers yet. Though some disease-resistant tobacco varieties have been developed by the conventional breeding technology and currently used by farmers, their disease controlling efficacy have been diminished by occurrence of the new strain or race. Future research on tobacco diseases has been focused on technical development to produce high quality tobacco with less production cost, which leads Korean tobacco industry to keep its competence against foreign industry and decreasing overall market.

Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation

  • Kwon, Tackmin
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.705-713
    • /
    • 2016
  • The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

Genomic Variations of Rice Regenerants from Tissue Culture Revealed by Whole Genome Re-Sequencing

  • Qin, Yang;Shin, Kong-Sik;Woo, Hee-Jong;Lim, Myung-Ho
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.426-433
    • /
    • 2018
  • Plant tissue culture is a technique that has invariably been used for various purposes such as obtaining transgenic plants for crop improvement or functional analysis of genes. However, this process can be associated with a variety of genetic and epigenetic instabilities in regenerated plants, termed as somaclonal variation. In this study, we investigated mutation spectrum, chromosomal distributions of nucleotide substitution types of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) by whole genome re-sequencing between Dongjin and Nipponbare along with regenerated plants of Dongjin from different induction periods. Results indicated that molecular spectrum of mutations in regenerated rice against Dongjin genome ranged from $9.14{\times}10^{-5}$ to $1.37{\times}10^{-4}$ during one- to three-month callus inductions, while natural mutation rate between Dongjin and Nipponbare genomes was $6.97{\times}10^{-4}$. Non-random chromosome distribution of SNP and InDel was observed in both regenerants and Dongjin genomes, with the highest densities on chromosome 11. The transition to transversion ratio was 2.25 in common SNPs of regenerants against Dongjin genome with the highest C/T transition frequency, which was similar to that of Dongjin against Nipponbare genome.

Assessing the potential invasiveness of transgenic plants in South Korea: a three-year case study on sunflowers

  • Han, Sung Min;Nam, Kyong-Hee
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.190-201
    • /
    • 2022
  • Background: The introduction of new living modified (LM) crops may pose a latent threat to the biodiversity of each country. Here, we used sunflowers (Helianthus annuus L.) as a study system to investigate the potential for invasiveness of LM crops under different environmental conditions when released into a natural ecosystem in South Korea. We examined the seed germination, survival, and flowering of sunflowers under competition with wild plants at different sowing dates (March-December) and plot sizes (1 m × 1 m and 2 m × 2 m). Results: The germination rate showed a significant difference according to the sowing date. In addition, several sunflowers survived in plots with a high germination rate, which also led to a higher flowering rate. We found that the smaller the plot, the smaller the area available for inter-species competition, and the higher the number of surviving sunflower plants. The relative dominance and importance value of the species varied significantly between the sowing dates; in particular, sunflowers sown in March could compete with wild plants for longer than those sown on other sowing dates. Conclusions: These observations indicate that the potential for invasiveness of sunflowers differs depending on the environmental conditions and seed density at the time of release.

Introduction and Expression of PAP gene using Agrobacterium in Scrophularia buergeriana Miquel (Agrobacterium을 이용한 PAP 유전자의 현삼으로 도입 및 형질발현)

  • Yu, Chang-Yeon;Seong, Eun-Soo;Lim, Jung-Dae;Huang, Shan-Ai;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.2
    • /
    • pp.156-165
    • /
    • 2001
  • Exogeneous application of pokeweed antiviral protein (PAP), a ribosomal-inacivating protein in the cell wall of Phytolacca americana (pokeweed) protects heterologous plants from viral and fungal infection. A cDNA clone of PAP introduced into Scrophularia buergeriana Miquel by thransformation with Agrobacterium tumefaciences. For plant transformation, explants were precultured on shoot induction medium without kanamycin for 2-5 day, and then they were cocultured with Agrobacterium for 10 minutes. The explants were placed on co culture medium in dark condition, $28^{\circ}C$ for 2days. After explants were washed in MS liquid medium, they were transferred into selection medium including kanamycin 50mg/L (MS salts+1mg/ l BAP+2mg/ l TDZ+0,2mg/ l NAA+MS vitamin+3% sucrose+0.8% agar, pH5.8). From PCR analysis, NPT II band was confirmed in transgenic plant genome and showed resistance against fungi in antifungal activity test. Micro assay to which protein extracted from transgenic line were added, revealed hyphae growth inhibition and no spore germination at high concentration. The characteristics of inhibited hyphae was represented transparent and thin. Expression of PAP in transgenic plants offers the possibility of developing resistance to viral and fungal infection.

  • PDF

Evaluation of Tissue Culture Efficiency in a Speed Breeding System for Stable and Sustainable Supported Wheat (Triticum aestivum) Immature Embryogenesis (안정적이며 지속적 밀(Triticum aestivum) 미성숙배 조직배양을 위한 스피드 브리딩 조건의 배양 효율 검정)

  • Lee, Geon Hee;Kim, Tae Kyeum;Choi, Chang Hyun;Kim, Jae Yoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.365-376
    • /
    • 2020
  • Immature embryogenesis is a useful process in wheat tissue culture, including transgenic technology, because of its high regeneration efficiency compared to that in other tissues. However, it is a very labor-intensive and time-restrictive method, because the preparation of immature embryos is limited to the optimal time after flowering. In this experiment, 'Speed Breeding', a breeding technique that accelerates breeding generation advancement by extending the photoperiod, was applied to the wheat variety 'Bobwhite'. A controlled growth room was constructed by adjusting the photoperiod (22-hour light/2-hour dark) using LED lights at temperature of 22℃. After vernalization of the Bobwhite seeds at 4℃ for 4 weeks, the seedlings were grown in a controlled growth room and a greenhouse to compare the heading date. In both conditions, calli were induced from immature embryos on the 11th day after flowering. After 4 weeks, the calli were transferred to a regeneration medium. Regeneration efficiencies under greenhouse conditions and Speed Breeding conditions were determined as 45.05% and 43.18%, respectively. Antioxidant enzyme activity and reference gene expression analysis were performed to confirm the presence of stress due to an extremely long-day photoperiod. As a result, the antioxidant enzyme activity was not distinguished from that of the greenhouse condition. The reference gene expression analysis revealed that the PsaA and CDC genes were highly expressed under the Speed Breeding condition. However, expression of PsbA was similar expression in both conditions. These results will provide useful information for the application of immature embryogenesis to the wheat transformation system.

Single-dose Oral Toxicity Study of β-glucosidase 1 (AtBG1) Protein Introduced into Genetically Modified Rapeseed (Brassica napus L.) (GM 유채에 도입된 β-glucosidase 1 (AtBG1)의 단회투여독성시험)

  • Lee, Soonbong;Jeong, Kwangju;Jang, Kyung-Min;Kim, Sung-Gun;Park, Jung-Ho;Kim, Shinje
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.194-201
    • /
    • 2017
  • Rapeseed (Brassica napus L.) is an oil crop classified as Brassicaceae, and it is widely grown worldwide. To develop a drought-resistant rapeseed, the ${\beta}$-glucosidase 1 (AtBG1) gene was introduced into rapeseed because drought- and salt-resistance phenotypes were observed when the AtBG1 gene was overexpressed in arabidopsis. Newly developed genetically modified crop must be proved to be safe. Safety assessments are based on the historical usage and scientific reports of a crop. In this study, we examined the potential acute oral toxicity of AtBG1 protein expressed in genetically modified (GM) rapeseed and calculated the minimum lethal dose at 6 weeks in both male and female ICR mice. AtBG1 protein was fed at a dose of 2,000 mg/kg body weight in five male and five female mice according to the marginal capacity concentration of OECD, 2,000 mg/15 ml/kg. Mortalities, clinical findings, and body weight changes were monitored for 14 days after dosing, and postmortem necropsy was performed on day 14. This study showed that no deaths occurred in the test group, and AtBG1 protein did not result in variations in common symptoms, body weight, and postmortem findings between the two groups. This showed that the minimum lethal dose of AtBG1 protein expressed in transgenic rapeseed exceed 2,000 mg/kg body weight in both sexes.