Browse > Article
http://dx.doi.org/10.14348/molcells.2016.0159

Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation  

Kwon, Tackmin (Institute of Agricultural Life Sciences, Dong-A University)
Abstract
The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.
Keywords
Agrobacterium-mediated transformation; porin; transient T-DNA gene expression; voltage-dependent anion channel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bundock, P., Den Dulk-Ras, A., Beifersbergen, A., and Hooykaas, P. (1995). Transkingdom T-DNA transfer Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14, 3206-3214.
2 Chateau, S., Sangwan, R.S., and Sangwan-Norreel, B.S. (2000). Competence of Arabidopsis thaliana genotypes and mutants for Agrobacterium tumefaciens-mediated gene transfer: role of phytohormones. J. Exp. Bot. 51, 1961-1968.   DOI
3 Cheng, E.H., Sheiko, T.V., Fisher, J.K., Craigen, W.J., and Korsmeyer, S.J. (2003). VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301, 513-517.   DOI
4 Crane, Y.M., and Gelvin, S.B. (2007). RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation. Proc. Natl. Acad. Sci. USA 104, 15156-15161.   DOI
5 De Buck, S., De Wilde, C., Van Montagu, M., and Depicker, A. (2000). Determination of the T-DNA transfer and the T-DNA integration frequencies upon cocultivation of Arabidopsis thaliana root explants. Mol. Plant-Microbe Interact. 13, 658-665.   DOI
6 Ditt, R.F., Kerr, K.F., De Figueiredo, P., Delrow, J., Comai, L., and Nester, E.W. (2006). The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol. Plant-Microbe Interact. 19, 665-681.   DOI
7 Djamei, A., Pitzschke, A., Nakagami, H., Rajh, I., and Hirt, H. (2007). Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318, 453-456.   DOI
8 Geier, T., and Sangwan, R. (1996). Histology and chemical segregation reveal cell-specific differences in the competence for regeneration and Agrobacterium-mediated transformation in Kohlera internode explants. Plant Cell Rep. 15, 386-390.   DOI
9 Gelvin, S.B. (2010). Plant proteins involved in Agrobacteriummediated genetic transformation. Annu. Rev. Phytopathol. 48, 45-68.   DOI
10 Gelvin, S.B. (2012). Traversing the Cell: Agrobacterium T-DNA's Journey to the Host Genome. Front Plant Sci. 3, 52.
11 Gouka, R., Gerk, C., Hooykaas, P., Bundock, P., Kusters, W., Verrips, C., and De Groot, M. (1999). Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat. Biotechnol. 17, 598-601.   DOI
12 Hansen, G. (2000). Evidence for Agrobacterium-induced apoptosis in maize cells. Mol. Plant-Microbe Interact. 13, 649-657.   DOI
13 Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C., and Citovsky, V. (2001). Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98, 1871-1876.   DOI
14 Lacroix, B., and Citovsky, V. (2013). The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int. J. Dev. Biol. 57, 467-481.   DOI
15 Lacroix, B., Loyter A., and Citovsky, V. (2008). Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Proc. Natl. Acad. Sci. USA 105, 15429-15434.   DOI
16 Lee, C.W., Efetova, M., Engelmann, J.C., Kramell, R., Wasternack, C., Ludwig-Muller, J., Hedrich, R., and Deeken, R. (2009). Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 21, 2948-2962.   DOI
17 Liu, C., Li, X., and Gelvin, S.B. (1992). Multiple copies of virG enhance the transient transformation of celery, carrot, and rice tissues by Agrobacterium tumefaciens. Plant. Mol. Biol. 20, 1071-1087.   DOI
18 Mysore, K.S., Ranjith-Kumar, C., and Gelvin, S.B. (2000b). Arabidopsis ecotype and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J. 21, 9-16.   DOI
19 Melo, J.O., Lana, U.G.P., Pineros, M.A., Alves, V.M.C., Guimaraes, C.T., Liu, J., Zheng, Y., Zhong, S., Fei, Z., Maron, L.G., et al. (2013). Incomplete transfer of accessory loci influencing SbMATE expression underlies genetic background effects for aluminum tolerance in sorghum. Plant J. 73, 276-288.   DOI
20 Mysore, K.S., Nam, J., and Gelvin, S.B. (2000a). An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc. Natl. Acad. Sci. USA 97, 948-953.   DOI
21 Nam, J., Matthysse, A., and Gelvin, S.B. (1997). Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. Plant Cell 9, 317-333.   DOI
22 Nam, J., Mysore, K.S., Zheng, C., Knue, M., Matthysse, A., and Gelvin, S.B. (1999). Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol. Gen. Gent. 261, 429-438.   DOI
23 Narasimhulu, S., Deng, X., Sarria, R., and Depicker, A. (1996). Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant Cell 8, 873-886.   DOI
24 Pan, X., Chen, Z., Yang, X., and Liu, G. (2014). Arabidopsis Voltage-Dependent Anion Channel 1 (AtVDAC1) is required for female development and maintenance of mitochondrial functions related to energy-transaction. PLoS ONE 9:e106941. doi:10.1371/journal.pone.0106941.   DOI
25 Rho, H., Kang, S., and Lee, Y. (2001). Agrobacterium tumefaciensmediated transformation of plant pathogenic fungus, Magnaporthe grisea. Mol. Cells 12, 407-411.
26 Shi, Y., Lee, L.Y., and Gelvin, S.B. (2014). Is VIP1 important for Agrobacterium-mediated transformation? Plant J. 79, 848-860.   DOI
27 Sampson, M., Lovell, R., and Craigen, W. (1997). The murine voltage-dependent anion channel gene family. J. Biol. Chem. 272, 18966-18973.   DOI
28 Sangwan, R., Bourgeois, Y., and Sangwan-Norreel, B. (1991). Genetic transformation of Arabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency. Mol. Gen. Genet. 230, 475-485.   DOI
29 Sangwan, R., Bourgeois, Y., Brown, S., Vasseur, G., and Sangwan-Norreel, B. (1992). Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana. Planta 188, 439-456.
30 Shoshan-Barmatz, V., De Pinto, V., Zweckstetter, M., Raviv, Z., Keinan, N., and Arbel, N. (2010). VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol. Aspects Med. 31, 227-285.   DOI
31 Shou, H., Frame, B.R., Whitham, S.A., and Wang, K. (2004). Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol. Breed. 13, 201-208.   DOI
32 Tateda, C., Watanabe, K., Kusano, T., and Takahashi, Y. (2011). Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. J. Exp. Bot. 62, 4773-4785.   DOI
33 Tsujimoto, Y., and Shimizu, S. (2002). The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84, 187-193.   DOI
34 Tzfira, T., Vaidya, M., and Citovsky, V. (2001). VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J. 20, 3596-3607.   DOI
35 Zhu, Y., Nam, J., Humara, J., Mysore, K., Lee, L.Y., Cao, H., Valentine, L., Li, J., Kaiser, A., Kopecky, A., et al. (2003). Identification of Arabidopsis rat mutants. Plant Physiol. 132, 285-298.
36 Tzfira, T., Vaidya, M., and Citovsky, V. (2002). Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc. Natl. Acad. Sci. USA 99, 10435-10440.   DOI
37 Zaltsman, A., Krinchevsky, A., Loyter, A., and Citovskya, V. (2010). Agrobacterium induces expression of a host F-box protein required for tumorigenicity. Cell Host Microbe 7, 197-209.   DOI
38 Zaltsman, A., Lacroixa, B., Gafnib, Y., and Citovskya, V. (2013). Disassembly of synthetic Agrobacterium T-DNA-protein complexes via the host SCFVBF ubiquitin-ligase complex pathway. Proc. Natl. Acad. Sci. USA 110, 169-174.   DOI
39 Anand, A., Vaghchhipawala, Z., Ryu, C.M., Kang, L., Wang, K., Del-Pozo, O., Martin, G.B., and Mysore, K.S. (2007a). Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. Mol. Plant-Microbe Interact. 20, 41-52.   DOI
40 Abu-Hamad, S., Sivan, S., and Shoshan-Barmatz, V. (2006). The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc. Natl. Acad. Sci. USA 103, 5787-5792.   DOI
41 Anand, A., Krichevsky, A., Schornack, S., Lahaye, T., Tzfira, T., Tang, Y., Citovsky, V., and Mysore, K.S. (2007b). Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19, 1695-708.   DOI
42 Baines, C.P., Kaiser, R.A., Sheiko, T., Craigen, W.J., and Molkentin, J.D. (2007). Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9, 550-555.   DOI
43 Bent, A., and Clough, S. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.   DOI
44 Blachly-Dyson, E., Song, J., Wolfgang, W., Colombini, M., and Forte, M. (1997). Multicopy suppressors of phenotypes resulting from the absence of yeast VDAC encode a VDAC-like protein. Mol. Cell Biol. 17, 5727-5783.   DOI