Browse > Article
http://dx.doi.org/10.7740/kjcs.2020.65.4.365

Evaluation of Tissue Culture Efficiency in a Speed Breeding System for Stable and Sustainable Supported Wheat (Triticum aestivum) Immature Embryogenesis  

Lee, Geon Hee (Department of Plant Resources, College of Industrial Science, Kongju National University)
Kim, Tae Kyeum (Department of Plant Resources, College of Industrial Science, Kongju National University)
Choi, Chang Hyun (National Institute of Crop Science, Rural Development Administration)
Kim, Jae Yoon (Department of Plant Resources, College of Industrial Science, Kongju National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.65, no.4, 2020 , pp. 365-376 More about this Journal
Abstract
Immature embryogenesis is a useful process in wheat tissue culture, including transgenic technology, because of its high regeneration efficiency compared to that in other tissues. However, it is a very labor-intensive and time-restrictive method, because the preparation of immature embryos is limited to the optimal time after flowering. In this experiment, 'Speed Breeding', a breeding technique that accelerates breeding generation advancement by extending the photoperiod, was applied to the wheat variety 'Bobwhite'. A controlled growth room was constructed by adjusting the photoperiod (22-hour light/2-hour dark) using LED lights at temperature of 22℃. After vernalization of the Bobwhite seeds at 4℃ for 4 weeks, the seedlings were grown in a controlled growth room and a greenhouse to compare the heading date. In both conditions, calli were induced from immature embryos on the 11th day after flowering. After 4 weeks, the calli were transferred to a regeneration medium. Regeneration efficiencies under greenhouse conditions and Speed Breeding conditions were determined as 45.05% and 43.18%, respectively. Antioxidant enzyme activity and reference gene expression analysis were performed to confirm the presence of stress due to an extremely long-day photoperiod. As a result, the antioxidant enzyme activity was not distinguished from that of the greenhouse condition. The reference gene expression analysis revealed that the PsaA and CDC genes were highly expressed under the Speed Breeding condition. However, expression of PsbA was similar expression in both conditions. These results will provide useful information for the application of immature embryogenesis to the wheat transformation system.
Keywords
immature embryogenesis; speed breeding; tissue culture; Triticum aestivum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Henmi, T., H. Yamasaki, S. Sakuma, Y. Tomokawa, N. Tamura, J. R. Shen, and Y. Yamamoto. 2003. Dynamic interaction between the D1 protein, CP43 and OEC33 at the luminal side of photosystem II in spinach chloroplasts : Evidence from light-induced cross-linking of the proteins in the donor-side photoinhibition. Plant Cell Physiol 44 : 451-456.   DOI
2 Ishida, Y., M. Tsunashima, Y. Hiei, and T. Komari. 2015. Wheat (Triticum aestivum L.) Transformation Using Immature Embryos. pp. 189-198. In : Wang K. (Eds) Agrobacterium Protocols. Springer, New York, NY.
3 Jin, H. I., M. Fu, Z. Duan, S. Duan, M. Li, X. Dong, B. Liu, D. Feng, J. Wang, L. Peng, and H. B. Wang. 2018. Low Photosynthetic efficiency 1 is required for light-regulated photosystem II biogenesis in Arabidopsis. P Natl Acad Sci Usa 115(26) : E6075-E6084.   DOI
4 Jones, L. W. and B. Kok. 1966. Photoinhibition of chloroplast reaction I Kinetics and action spectra. Plant Physiol 41 : 1037-1043.   DOI
5 Kadowaki, M., A. Yano, F. Ishizu, T. Tanaka, and S. Noda. 2012. Effects of greenhouse photovoltaic array shading on Welsh onion growth. Biosyst Eng 111 : 290-297.   DOI
6 Kim, D. Y., M. J. Hong, C. S. Park, and Y. W. Seo. 2015. The effects of chronic radiation of gamma ray on protein expression and oxidative stress in Brachypodium distachyon. Int J Radiat Biol 91(5) : 407-19.   DOI
7 Kim, K. M., C. S. Kang, Y. K. Kim, K. H. Kim, J. H. Park, Y. M. Yoon, H. H. Park, H. Y. Jeong, C. H. Choi, J. H. Park, Y. J. Kim, Y. K. Cheong, O. K. Han, and T. I. Park. 2020. Past and Current Status, and Prospect of Winter Cereal Crops Research for Food and Forage in Korea. Korean J Breed Sci Special Issue : 73-92.
8 KISTEP (Korea Institute of S&T Evaluation and Planning). 2018. New Plant Breeding Techniques (NPBTs). pp. 3-5.
9 Korea Customs Service. 2020. Trade statistics, inquiry of trade statistics. https://unipass.customs.go.kr.
10 Vasil, V., A. M. Castillo, M. E. Fromm, and I. K. Vasil. 1992. Herbicide resistant fertile transgenic wheat plant obtained by microprojectile bombardment of regenerable embryogenic callus. Nat Biotechnol 10 : 667-674.   DOI
11 Bhalla, P. L., H. H. Ottenhof, and M. B. Singh. 2006. Wheat transformation - an update of recent progress. Euphytica 149 : 353-366.   DOI
12 Alikina, O., M. Chernobrovkina, S. Dolgov, and D. Miroshnichenko. 2016. Tissue culture efficiency of wheat species with different genomic formulas. Crop Breed Appl Biot 16 : 307-314.   DOI
13 Ali, N., U. I. Rahman, F. Badakshi, M. J. Tariq, and A. MujeebKazi. 2020. Ensuring sustainable food security : exploiting alien genetic diversity in wheat breeding for adaptation to emerging stresses. pp. 31-42. In : Munir O, Alvina G. Climate change and food security with emphasis on wheat. Academic Press, Massachusetts, United States.
14 Begue, H., A. Mounier, C. Rosnoblet, and D. Wendehenne. 2019. Toward the under standing of the role of CDC48, a major component of the protein quality control, in plant immunity. Plant Sci 297 : 34-44.
15 Yu, X., D. Hao, J. Yang, L. Ran, Y. Zang, and F. Xiong. 2020. Effects of low temperature at stem elongation stage on the development, morphology, and physicochemical properties of wheat starch. Peerj 8 :e9672.   DOI
16 Watson, A., S. Ghosh, M. J. Williams, W. S. Cuddy, J. Simmonds, M. D. Rey, M. A. M. Hatta, A. Hinchliffe, A. Steed, D. Reynolds, N. M. Adamski, A. Breakspear, A. Korolev, T. Rayner, L. E. Dixon, A. Riaz, M. Martin Wm Ryan, D. Edwards, J. Batley, H. Raman, J. Carter, C. Rogers, C. Domoney, G. Moore, W. Harwood, P. Nicholson, M. J. Dieters, I. H. Delacy, J. Zhou, C. Uauy, S. A. Boden, R. F. Park, B. H. Wulff, and L. T. Hickey. 2018. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4 : 23-29.   DOI
17 Yadav, H., K. Malik, S. Kumar, and P. K. Jaiwal. 2020. Comparative regeneration in six bread wheat (Triticum aestivum L.) varieties from immature and mature scutella for developing efficient and genotype-independent protocol prerequisite for genetic improvement of wheat. In Vitro Cell Dev-Pl.
18 Yoon, J. S., J. Y. Kim, M. B. Lee, and Y. W. Seo. 2019. Overexpression of the Brachypodium ASR gene, BdASR4, enhances drought tolerance in Brachypodium distachyon. Plant Cell Rep 38 : 1109-1125.   DOI
19 Zhang, H., X. L. Liu, R. X. Zhang, H. Y. Yuan, M. M. Wang, H. Y. Yang, H. Y. Ma, D. Liu, C. J. Jiang, and Z. W. Liang. 2017. Root damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Front Plant Sci 8 : 1580.   DOI
20 Zhu, X., F. Song, and H. Xu. 2010. Influence of arbuscular mycorrhiza on lipid peroxidation and antioxidant enzyme activity of maize plants under temperature stress. Mycorrhiza 20 : 325-332.   DOI
21 Ogawa, K., S. Kanematsu, K. Takabe, and K. Asada. 1995. Attachment of Cu/Zn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PS1) in spinach chloroplasts : detection by immuno-gold labeling after rapid freezing and substitution method. Plant Cell Physiol 36 : 565-573.
22 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Aanl Biochem 72(1) : 248-254.   DOI
23 Leelavathi, S., A. Bhardwaj, S. Kumar, A. Dass, R. Pathak, S. S. Pandey, B. C. Tripathy, K. V. Padmalatha, G. Dhandapani, M. Kanakachari, P. A. Kumar, R. Cella, and V. S. Reddy. 2011. Genome-wide transcriptome and proteome analyses of tobacco psaA and psbA deletion mutants. Plant Mol Biol 76 : 407-423.   DOI
24 Liu, Z. W., H. P. Li, W. Cheng, P. Yang, J. B. Zhang, A. D. Gong, Y. N. Feng, W. G. D. Fernando, and Y. C. Liao. 2012. Enhanced overall resistance to Fusarium seedling blight and Fusarium head blight in transgenic wheat by co-expression of anti-fungal peptides. Eur J Plant Pathol 134(4) : 721-732.   DOI
25 Livak, K. J and T. D. Schmittgen. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 25 : 402-408.   DOI
26 Murin, R., K. Meszaros, P. Nemecek, R. Kuna, and J. Farago. 2012. Regeneration of immature and mature embryos from diverse sets of wheat genotypes using media containing different auxins. Acta Agron Hung 60 : 87-108.   DOI
27 Ozakca, D. U. 2013. Effect of Abiotic Stress on Photosystem I-Related Gene Transcription in Photosynthetic Organisms. pp 161-184. In : Dubinsky Z. (Eds) Photosynthesis. InTech, Rijeka, Croatia.
28 Pandey, D. M. and U. Yeo. 2008. Stress-induced degradation of D1 protein and its photoprotection by DCPIP in isolated thylakoid membranes of barley leaf. Biol Plantarum 52 : 291.   DOI
29 Cha, J. K., J. H. Lee, S. M. Lee, and J. M. Ko, and D. J. Shin. 2019. Heading Date and Growth Character of Korean Wheat Cultivars by Controlling Photoperiod for Rapid Generation Advancement. Korean J Breed Sci 52(1) : 20-24.   DOI
30 Park, S. H., D. M. Rancour, and S. Y. Bednarek. 2008. In Planta Analysis of the Cell Cycle-Dependent Localization of AtCDC48A and Its Critical Roles in Cell Division, Expansion, and Differentiation. Plant Physiol 148(1) : 246-258.   DOI
31 Cheng, M., J. E. Fry, S. Pang, H. Zhou, C. M. Hironaka, D. R. Duncan, T. W. Conner, and Y. Wan. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115 : 971-980.   DOI
32 Garrido, J., M. Aguilar, and P. Prieto. 2020. Identification and validation of reference genes for RT-qPCR normalization in wheat meiosis. Sci Rep 10 : 2726.   DOI
33 Ghosh, S., A. Watson, O. E. Gonzalez-Navarro, R. H. RamirezGonzalez, L. Yanes, M. Mendoza-Suarez, J. Simmonds, R. Wells, T. Rayner, P. Green, A. Hafeez, S. Hayta, R. E. Melton, A. Steed, A. Sarkar, J. Carter, L. Perkins, J. Lord, M. Tester, A. Osbourn, M. J. Moscou, P. Nicholson, W. Harwood, C. Martin, C. Domoney, C. Uauy, B. Hazard, B. B. H. Wulff, and L. T. Hickey. 2018. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13 : 2944-2963.   DOI
34 Gils, M., M. Rubtsova, and K. Kempe. 2012. Split-Transgene Expression in Wheat. pp. 123-135. In : Dunwell JM, Wetten AC. (Eds) Transgenic Plants. Humana Press, Totowa, NJ.
35 Snider, J., G. Thibault, and W. A. Houry. 2008. The AAA+ superfamily of functionally diverse proteins. Genome Biol 9(4) : 216.   DOI
36 Hasanuzzaman, M., M. A. Hossain, J. A. Teixeira da Silva, and M. Fujita. 2011. Plant response and tolerance to abiotic oxidative stress : antioxidant defense is a key factor. pp 261-315. In : Venkateswarlu B, Shanker AK, sShanker C, Maheswari M. (Eds) Crop stress and its management perspectives and strategies. Springer, New York, NY.
37 Hayta, S., M. A. Smedley, S. U. Demir, R. Blundell, A. Hinchliffe, N. Atkinson, and W. A. Harwood. 2019. An efficient and reproducible Agrobacterium-mediated transformation method for hexaploid wheat (Triticum aestivum L.). Plant Methods 15 : 121.   DOI
38 Paux, E., D. Roger, E. Badaeva, G. Gay, M. Bernard, P. Sourdille, and C. Feuillet. 2006. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48 : 463-474.   DOI
39 RDA (Rural Development Administration). 2012. Manual for Standard Evaluation Method in Agricultural Experiment and Research. pp. 316-344.
40 Sharma, P., A. B. Jha, R. S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Jpn J Bot 1-26.
41 Statistics Korea. 2019. Statistics of agriculture, forestry and fishery. http://Kosis.kr.
42 Teroshima, I., S. Funayama, and K. Sonoike. 1994. The site of photoinhibition in leaves of Cucumis sativus L. at low temperature is photosystem I, not photosystem II. Planta 193 : 300-306.   DOI
43 Sultana, N., S. Islam, A. Juhasz, R. Yang, M. She, Z. Alhabbar, J. Zhang, and W. Ma. 2020. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front Genet 11 : 583785.   DOI
44 Sun, L., P. Lei, Q. Wang, J. Ma, Y. Zhan, K. Jiang, Z. Xu, and H. Xu. 2020. The endophyte Pantoea alhagi NX-11 alleviates salt stress damage to rice seedlings by secreting exopolysaccharides. Front Microbiol 10 : 3112.   DOI
45 Tao, L., G. Yin, L. Du, Z. Shi, M. She, H. Xu, and X. Ye. 2011. Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens. Agr Sci China 10(3) : 317-326.   DOI