• Title/Summary/Keyword: transformer windings

Search Result 224, Processing Time 0.033 seconds

Analysis of a New Parallel Three-Level Zero-Voltage Switching DC Converter

  • Lin, Bor-Ren;Chen, Jeng-Yu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.128-137
    • /
    • 2015
  • A novel parallel three-level zero voltage switching (ZVS) DC converter is presented for medium voltage applications. The proposed converter includes three sub-circuits connected in parallel with the same power switches to share load current and reduce the current stress of passive components at the output side. Thus, the size of the output chokes is reduced and the switch counts in the proposed converter are less that in the conventional parallel three-level DC/DC converter. Each sub-circuit combines one half-bridge converter and one three-level converter. The transformer secondary windings of these two converters are connected in series in order to reduce the size of output inductor. Due to the three-level circuit topology, the voltage stress of power switches is equal to $V_{in}/2$. Based on the resonant behavior by the output capacitance of power switches and the leakage inductance (or external inductance) at the transition interval, each switch can be turned on under ZVS. Finally, experiments based on a 2 kW prototype are provided to verify the performance of the proposed converter.

Characteristics of a Hybrid-type SFCL with Serial and Parallel Connection of Secondary Circuit (2차회로의 직.병렬연결에 따른 하이브리드형 초전도 한류기의 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Nam, Goung-Hyun;Lee, Na-Young;Han, Tae-Hee;Choi, Choi-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.393-395
    • /
    • 2006
  • We investigated the operational characteristics of the hybrid-type superconducting fault current limiter (SFCL) according to the serial and parallel connections of secondary circuits. The hybrid-type SFCL consists of a transformer, which has a primary winding and several secondary windings with $YBa_2Cu_3O_7$ films connected in series and parallel. In order to increase the capacity of the SFCL, the serial connection between each current limiting unit is necessary. The hybrid-type SFCL with the serial connection in secondary circuits could show superior characteristics than those of the parallel connections in the current limiting and quench time. The resistances generated in the superconducting units were also lowered at the parallel connections. We confirmed that the parallel connection reduced the power burden of each superconducting unit under the same conditions because of the simultaneous quenching between superconducting units.

  • PDF

Partial Discharge Process and Characteristics of Oil-Paper Insulation under Pulsating DC Voltage

  • Bao, Lianwei;Li, Jian;Zhang, Jing;Jiang, Tianyan;Li, Xudong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.436-444
    • /
    • 2016
  • Oil-paper insulation of valve-side windings in converter transformers withstand electrical stresses combining with AC, DC and strong harmonic components. This paper presents the physical mechanisms and experimental researches on partial discharge (PD) of oil-paper insulation at pulsating DC voltage. Theoretical analysis showed that the phase-resolved distributions of PDs generated from different insulated models varied as the increase of the applied voltages following a certain rule. Four artificial insulation defect models were designed to generate PD signals at pulsating DC voltages. Theoretical statements and experimental results show that the PD pulses first appear at the maximum value of the applied pulsating DC voltage, and the resolved PD phase distribution became wider as the applied voltage increased. The PD phase-resolved distributions generated from the different discharge models are also different in the phase-resolved distributions and development progress. It implies that the theoretical analysis is suitable for interpretation of PD at pulsating DC voltage.

Quench Characteristics of Flux-Lock Type Superconducting Fault Current Limiter According to The Number of YBCO (YBCO의 직렬연결에 따른 자속구속형 초전도 한류기의 퀜치특성)

  • Lee Sang-Il;Park Hyoung-Min;Choi Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.8
    • /
    • pp.329-333
    • /
    • 2006
  • We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) depending on the number of the serial connection between the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil through an iron core, and the secondary coil is connected to the superconducting elements in series. The operation of the flux-lock type SFCL can be divided into the subtractive and the additive polarity windings depending on the winding directions between the primary and secondary coils. In this paper, the analyses of voltage, current, and resistance of superconducting elements in serial connection were performed to increase the power capacity of flux-lock type SFCL. The power burden was reduced through the simultaneous quenching between the superconducting elements. This enabled the flux-lock type SFCL to be easy to increase the capacity of power system.

Operating Characteristics of Hybrid Type Superconducting Fault Current Limiter (하이브리드형 초전도 한류기의 동작 특성)

  • Cho, Yong-Sun;Nam, Gueng-Hyun;Lim, Sung-Hun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.255-258
    • /
    • 2006
  • We investigated the operating characteristics of the hybrid-type superconducting fault current limiter (SFCL) according to the inductance of secondary windings. The hybrid type SFCL consists of a transformer that has a primary winding and a secondary winding with serially connected $YBa_2Cu_3O_7$ (YBCO) films. The resistive-type SFCL has difficulty when it comes to raising the capacity of the SFCL due to slight differences of critical current densities between units and structure of the SFCL. The hybrid-type SFCL with closed-loop is able to achieve capacity increase through the electrical isolation and reduction of the inductance of the secondary winding with a superconducting element of the same critical current. On the other hand, the current limiting characteristics were nearly identical in the hybrid-type SFCL with open-loop compared to closed-loop, but quench time was longer than the hybrid-type SFCL with closed-loop. We confirmed that the capacity of the SFCL was increased effectively by the reduced inductance of the secondary winding. In addition, the power burden of the system also could be lowered by reducing the inductance of secondary winding.

Development of Transcutaneous Energy Transmission System for Implantable Devices (생체 이식형 무선에너지 전송 시스템 개발)

  • Yoo Dong-Soo;Lee Joon-Ha;Seo Hee-Don;Lee Sang-Hag
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.155-159
    • /
    • 2005
  • As a part of implantable device in body, a transcutaneous energy transmission system has been developed. It would be desirable to tansfer electrical energy to implantable devices transcutaneously. The distance between transcutaneous transformer windings are approximately equal to the thickness of the human's skin, nominally between 10$\~$20 mm. Class-E resonant amplifier is used to drive a primary coil for high efficiency. Maximum current is above 50 mA at any frequency. The developed system shows that the circuit operates correctly at each frequency; 500 kHz, 1 MHz and 4 MHz.

  • PDF

New Multi-Output LLC Resonant Converter for High Efficiency and Low Cost PDP Power Module

  • Kim Chong-Eun;Moon Gun-Woo;Lee Jun-Young;Oh Kwan-Il;Kwon Joong-Yeol
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.71-74
    • /
    • 2006
  • A new multi-output LLC resonant converter is proposed for high efficiency and low cost plasma display panel (PDP) power module. In the proposed converter, zero-voltage (ZV) turn-on of the primary MOSFETs and zero-voltage (ZC) turn-on and turn-off of the secondary diodes are guaranteed in the overall input voltage and output load ranges. In addition, the primary MOSFETs and the secondary diodes have the low voltage stresses clamped to input and the output voltages, respectively. Therefore, the proposed converter shows the high efficiency due to the minimized switching and conduction losses. Moreover, by employing the transformer with multiple secondary windings, the proposed converter can have multiple outputs, which show the great crossregulation characteristics. Therefore, the proposed converter is suitable for high efficiency and low cost PDP power module.

  • PDF

Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors

  • Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1629-1638
    • /
    • 2016
  • Differential power processing (DPP) systems are among the most effective architectures for photovoltaic (PV) power systems because they are highly efficient as a result of their distributed local maximum power point tracking ability, which allows the fractional processing of the total generated power. However, DPP systems require a high-efficiency, high step-up/down bidirectional converter with broad operating ranges and galvanic isolation. This study proposes a single, magnetic, high-efficiency, high step-up/down bidirectional DC-DC converter. The proposed converter is composed of a bidirectional flyback and a bidirectional isolated switched-capacitor cell, which are competitively cheap. The output terminals of the flyback converter and switched-capacitor cell are connected in series to obtain the voltage step-up. In the reverse power flow, the converter reciprocally operates with high efficiency across a broad operating range because it uses hard switching instead of soft switching. The proposed topology achieves a genuine on-off interleaved energy transfer at the transformer core and windings, thus providing an excellent utilization ratio. The dynamic characteristics of the converter are analyzed for the controller design. Finally, a 240 W hardware prototype is constructed to demonstrate the operation of the bidirectional converter under a current feedback control loop. To improve the efficiency of a PV system, the maximum power point tracking method is applied to the proposed converter.

Design of a High-Precision Constant Current AC-DC Converter with Inductance Compensation

  • Chang, Changyuan;Xu, Yang;Bian, Bin;Chen, Yao;Hu, Junjie
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.840-848
    • /
    • 2016
  • A primary-side regulation AC-DC converter operating in the PFM (Pulse Frequency Modulation) mode with a high precision output current is designed, which applies a novel inductance compensation technique to improve the precision of the output current, which reduces the bad impact of the large tolerance of the transformer primary side inductance in the same batch. In this paper, the output current is regulated by the OSC charging current, which is controlled by a CC (constant current) controller. Meanwhile, for different primary inductors, the inductance compensation module adjusts the OSC charging current finely to improve the accuracy of the output current. The operation principle and design of the CC controller and the inductance compensation module are analyzed and illustrated herein. The control chip is implemented based on a TSMC 0.35μm 5V/40V BCD process, and a 12V/1.1A prototype has been built to verify the proposed control method. The deviation of the output current is within ±3% and the variation of the output current is less than 1% when the inductances of the primary windings vary by 10%.

Analysis and Implementation of a New Three-Level Converter

  • Lin, Bor-Ren;Nian, Yu-Bin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.478-487
    • /
    • 2014
  • This study presents a new interleaved three-level zero-voltage switching (ZVS) converter for high-voltage and high-current applications. Two circuit cells are operated with interleaved pulse-width modulation in the proposed converter to reduce the current ripple at the input and output sides, as well as to decrease the current rating of output inductors for high-load-current applications. Each circuit cell includes one half-bridge converter and one three-level converter at the primary side. At the secondary side, the transformer windings of two converters are connected in series to reduce the size of the output inductor or switching current in the output capacitor. Based on the three-level circuit topology, the voltage stress of power switches is clamped at $V_{in}/2$. Thus, MOSFETs with 500 V voltage rating can be used at 800 V input voltage converters. The output capacitance of the power switch and the leakage inductance (or external inductance) are resonant at the transition interval. Therefore, power switches can be turned on under ZVS. Finally, experiments verify the effectiveness of the proposed converter.