• Title/Summary/Keyword: transfer-learning

Search Result 732, Processing Time 0.032 seconds

Application of the machine learning technique for the development of a condensation heat transfer model for a passive containment cooling system

  • Lee, Dong Hyun;Yoo, Jee Min;Kim, Hui Yung;Hong, Dong Jin;Yun, Byong Jo;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2297-2310
    • /
    • 2022
  • A condensation heat transfer model is essential to accurately predict the performance of the passive containment cooling system (PCCS) during an accident in an advanced light water reactor. However, most of existing models tend to predict condensation heat transfer very well for a specific range of thermal-hydraulic conditions. In this study, a new correlation for condensation heat transfer coefficient (HTC) is presented using machine learning technique. To secure sufficient training data, a large number of pseudo data were produced by using ten existing condensation models. Then, a neural network model was developed, consisting of a fully connected layer and a convolutional neural network (CNN) algorithm, DenseNet. Based on the hold-out cross-validation, the neural network was trained and validated against the pseudo data. Thereafter, it was evaluated using the experimental data, which were not used for training. The machine learning model predicted better results than the existing models. It was also confirmed through a parametric study that the machine learning model presents continuous and physical HTCs for various thermal-hydraulic conditions. By reflecting the effects of individual variables obtained from the parametric analysis, a new correlation was proposed. It yielded better results for almost all experimental conditions than the ten existing models.

A Study of Situated Cognition and Transfer in Mathematics Learning (수학 학습에서의 상황인지와 전이에 대한 연구$^{1)}$)

  • 박성선
    • Education of Primary School Mathematics
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 1999
  • This paper investigates the comparative effectiveness of two kinds of instructional methods in transfer of mathematics learning: one based on the situated cognition, ie. situated learning and the other based on traditional learning. Two classes of second graders studied the instruction about 3-digit addition and subtraction. After that, they completed two written tests and a real situation test. As a result. no significant differences were found between the two group's performance on the written test 1 and real situation test. But the situated learning group performed significantly better on the performance of story problem than traditional group. This result indicated that the situated learning made improvement in transfer of mathematic loaming. As a result of interviews with 12 children, the situated loaming group's children were able to use contextual resources in solving real situation as well as story problems.

  • PDF

Study on Enhancing Training Efficiency of MARL for Swarm Using Transfer Learning (전이학습을 활용한 군집제어용 강화학습의 효율 향상 방안에 관한 연구)

  • Seulgi Yi;Kwon-Il Kim;Sukmin Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.361-370
    • /
    • 2023
  • Swarm has recently become a critical component of offensive and defensive systems. Multi-agent reinforcement learning(MARL) empowers swarm systems to handle a wide range of scenarios. However, the main challenge lies in MARL's scalability issue - as the number of agents increases, the performance of the learning decreases. In this study, transfer learning is applied to advanced MARL algorithm to resolve the scalability issue. Validation results show that the training efficiency has significantly improved, reducing computational time by 31 %.

A Comparison of Meta-learning and Transfer-learning for Few-shot Jamming Signal Classification

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Kang-Suk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • Typical anti-jamming technologies based on array antennas, Space Time Adaptive Process (STAP) & Space Frequency Adaptive Process (SFAP), are very effective algorithms to perform nulling and beamforming. However, it does not perform equally well for all types of jamming signals. If the anti-jamming algorithm is not optimized for each signal type, anti-jamming performance deteriorates and the operation stability of the system become worse by unnecessary computation. Therefore, jamming classification technique is required to obtain optimal anti-jamming performance. Machine learning, which has recently been in the spotlight, can be considered to classify jamming signal. In general, performing supervised learning for classification requires a huge amount of data and new learning for unfamiliar signal. In the case of jamming signal classification, it is difficult to obtain large amount of data because outdoor jamming signal reception environment is difficult to configure and the signal type of attacker is unknown. Therefore, this paper proposes few-shot jamming signal classification technique using meta-learning and transfer-learning to train the model using a small amount of data. A training dataset is constructed by anti-jamming algorithm input data within the GNSS receiver when jamming signals are applied. For meta-learning, Model-Agnostic Meta-Learning (MAML) algorithm with a general Convolution Neural Networks (CNN) model is used, and the same CNN model is used for transfer-learning. They are trained through episodic training using training datasets on developed our Python-based simulator. The results show both algorithms can be trained with less data and immediately respond to new signal types. Also, the performances of two algorithms are compared to determine which algorithm is more suitable for classifying jamming signals.

One-dimensional CNN Model of Network Traffic Classification based on Transfer Learning

  • Lingyun Yang;Yuning Dong;Zaijian Wang;Feifei Gao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.420-437
    • /
    • 2024
  • There are some problems in network traffic classification (NTC), such as complicated statistical features and insufficient training samples, which may cause poor classification effect. A NTC architecture based on one-dimensional Convolutional Neural Network (CNN) and transfer learning is proposed to tackle these problems and improve the fine-grained classification performance. The key points of the proposed architecture include: (1) Model classification--by extracting normalized rate feature set from original data, plus existing statistical features to optimize the CNN NTC model. (2) To apply transfer learning in the classification to improve NTC performance. We collect two typical network flows data from Youku and YouTube, and verify the proposed method through extensive experiments. The results show that compared with existing methods, our method could improve the classification accuracy by around 3-5%for Youku, and by about 7 to 27% for YouTube.

A Feature-Based Malicious Executable Detection Approach Using Transfer Learning

  • Zhang, Yue;Yang, Hyun-Ho;Gao, Ning
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.57-65
    • /
    • 2020
  • At present, the existing virus recognition systems usually use signature approach to detect malicious executable files, but these methods often fail to detect new and invisible malware. At the same time, some methods try to use more general features to detect malware, and achieve some success. Moreover, machine learning-based approaches are applied to detect malware, which depend on features extracted from malicious codes. However, the different distribution of features oftraining and testing datasets also impacts the effectiveness of the detection models. And the generation oflabeled datasets need to spend a significant amount time, which degrades the performance of the learning method. In this paper, we use transfer learning to detect new and previously unseen malware. We first extract the features of Portable Executable (PE) files, then combine transfer learning training model with KNN approachto detect the new and unseen malware. We also evaluate the detection performance of a classifier in terms of precision, recall, F1, and so on. The experimental results demonstrate that proposed method with high detection rates andcan be anticipated to carry out as well in the real-world environment.

Multi-class Classification of Histopathology Images using Fine-Tuning Techniques of Transfer Learning

  • Ikromjanov, Kobiljon;Bhattacharjee, Subrata;Hwang, Yeong-Byn;Kim, Hee-Cheol;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.849-859
    • /
    • 2021
  • Prostate cancer (PCa) is a fatal disease that occurs in men. In general, PCa cells are found in the prostate gland. Early diagnosis is the key to prevent the spreading of cancers to other parts of the body. In this case, deep learning-based systems can detect and distinguish histological patterns in microscopy images. The histological grades used for the analysis were benign, grade 3, grade 4, and grade 5. In this study, we attempt to use transfer learning and fine-tuning methods as well as different model architectures to develop and compare the models. We implemented MobileNet, ResNet50, and DenseNet121 models and used three different strategies of freezing layers techniques of fine-tuning, to get various pre-trained weights to improve accuracy. Finally, transfer learning using MobileNet with the half-layer frozen showed the best results among the nine models, and 90% accuracy was obtained on the test data set.

A Computer-Aided Diagnosis of Brain Tumors Using a Fine-Tuned YOLO-based Model with Transfer Learning

  • Montalbo, Francis Jesmar P.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4816-4834
    • /
    • 2020
  • This paper proposes transfer learning and fine-tuning techniques for a deep learning model to detect three distinct brain tumors from Magnetic Resonance Imaging (MRI) scans. In this work, the recent YOLOv4 model trained using a collection of 3064 T1-weighted Contrast-Enhanced (CE)-MRI scans that were pre-processed and labeled for the task. This work trained with the partial 29-layer YOLOv4-Tiny and fine-tuned to work optimally and run efficiently in most platforms with reliable performance. With the help of transfer learning, the model had initial leverage to train faster with pre-trained weights from the COCO dataset, generating a robust set of features required for brain tumor detection. The results yielded the highest mean average precision of 93.14%, a 90.34% precision, 88.58% recall, and 89.45% F1-Score outperforming other previous versions of the YOLO detection models and other studies that used bounding box detections for the same task like Faster R-CNN. As concluded, the YOLOv4-Tiny can work efficiently to detect brain tumors automatically at a rapid phase with the help of proper fine-tuning and transfer learning. This work contributes mainly to assist medical experts in the diagnostic process of brain tumors.

Transfer Learning-Based Feature Fusion Model for Classification of Maneuver Weapon Systems

  • Jinyong Hwang;You-Rak Choi;Tae-Jin Park;Ji-Hoon Bae
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.673-687
    • /
    • 2023
  • Convolutional neural network-based deep learning technology is the most commonly used in image identification, but it requires large-scale data for training. Therefore, application in specific fields in which data acquisition is limited, such as in the military, may be challenging. In particular, the identification of ground weapon systems is a very important mission, and high identification accuracy is required. Accordingly, various studies have been conducted to achieve high performance using small-scale data. Among them, the ensemble method, which achieves excellent performance through the prediction average of the pre-trained models, is the most representative method; however, it requires considerable time and effort to find the optimal combination of ensemble models. In addition, there is a performance limitation in the prediction results obtained by using an ensemble method. Furthermore, it is difficult to obtain the ensemble effect using models with imbalanced classification accuracies. In this paper, we propose a transfer learning-based feature fusion technique for heterogeneous models that extracts and fuses features of pre-trained heterogeneous models and finally, fine-tunes hyperparameters of the fully connected layer to improve the classification accuracy. The experimental results of this study indicate that it is possible to overcome the limitations of the existing ensemble methods by improving the classification accuracy through feature fusion between heterogeneous models based on transfer learning.

A Study on the International Transfer of Retail Know-how: A Case of 7-Eleven (소매 노하우의 국제이전에 관한 연구 : 7-Eleven 사례를 중심으로)

  • Kim, Hyun-Chul
    • Journal of Distribution Research
    • /
    • v.13 no.4
    • /
    • pp.1-19
    • /
    • 2008
  • This study investigated the international transfer of retail know-how via the prism of Learning Organizational Theory. As a case, 7-Eleven, a worldwide chain of convenience stores was examined. Its international transfer of retail know-how occurred when 7-Eleven, originally founded by Southland Corporation in Dallas, Texas, was introduced in Japan in 1973 in the form of 7-Eleven Japan. Our analysis shows that both strategic core learning and adaptive learning played a significant role during the international transfer of retail know-how. Our findings reveal the evidence of the following elements of strategic core learning such as the convenience store concept, the three principles of store management, the minimum profit guarantee system, and the margin-based royalty system. On the other hand, the retailing mix such as store type, store location, store size, and merchandising acted as the acting agents of adaptive learning. The hypothesis verification methods acted as the main methods for adaptive learning. Through the persistent adaptive learning, inimitable innovations could be brought forth. However, the elements of strategic core learning should provide the direction for the adaptive learning.

  • PDF