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ABSTRACT

Prostate cancer (PCa) is a fatal disease that occurs in men. In general, PCa cells are found in the 

prostate gland. Early diagnosis is the key to prevent the spreading of cancers to other parts of the body. 

In this case, deep learning-based systems can detect and distinguish histological patterns in microscopy 

images. The histological grades used for the analysis were benign, grade 3, grade 4, and grade 5. In 

this study, we attempt to use transfer learning and fine-tuning methods as well as different model 

architectures to develop and compare the models. We implemented MobileNet, ResNet50, and DenseNet121 

models and used three different strategies of freezing layers techniques of fine-tuning, to get various 

pre-trained weights to improve accuracy. Finally, transfer learning using MobileNet with the half-layer 

frozen showed the best results among the nine models, and 90% accuracy was obtained on the test data 

set.
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1. INTRODUCTION   

Cancer begins when cells in the human body 

start to grow uncontrollably. Cells in almost any 

part of the body can become cancerous, which can 

then spread to other areas of the body. PCa is one 

of the most common cancers after skin cancer in 

American men. According to the American Cancer 

Society statistics, approximately 1 in 8 men will 

be diagnosed with PCa in their lifetime [1].

Histological examination of tissues and the de-

tection of cancer by physicians remains the gold 

standard in cancer diagnosis. The diagnosis of PCa 

is heavily time-consuming. In addition, it is based 

on subjective grading. For example, the study by 

Ozkan et al. reported that two pathologists dis-

agreed about the presence of cancer in 31 of 407 

baseline biopsies and that the total concordance of 

the accessed Gleason score was only 51.7%, de-

scribing these challenges in diagnosing the PCa 

consistently [2]. Therefore, the development of 

computer-assisted decision support tools is essen-

tial for saving time, predicting disease outcomes, 

and improving precision medicine for pathologists. 

There has been considerable interest in the de-

velopment of methods based on digital image proc-

essing and machine learning. These methods are 

used to automatically analyze pathological images 

***-****-****
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to classify tissues and disease, as well as to im-

prove accuracy and diagnostic standard [3-5]. On 

top of that, recent advances in deep learning re-

search have succeeded in increasing the perform-

ance of such analytics [6-9]. However, the pro-

posed deep learning models often require a sig-

nificant amount of annotated data to be properly 

trained. Because cohort sizes can be small and his-

topathological image annotation takes a long time, 

a concept known as transfer learning, training 

neural networks with an external dataset, primarily 

ImageNet [10], and then fine-tuning the model 

with the dataset in hand, can prove useful. Such 

a pre-trained model and fine-tuning approach are 

more effective than training the same neural net-

work architecture from scratch in studies involving 

digital pathological image analysis [11-15]. Trans-

fer learning can also be beneficial in adapting areas 

imaged by different microscopes or staining proce-

dures.

B. Kieffer et al. [16] explored the problem of 

classification within a medical image dataset based 

on a feature vector extracted from the deepest layer 

of pre-trained Convolution Neural Network (CNN). 

They used feature vectors from several pre-trained 

structures, including networks with/without trans-

fer learning to evaluate the performance of pre- 

trained deep features versus CNN which have been 

trained by that specific dataset. Their result shows 

that pre-trained networks are quite competitive 

against training from scratch. As well, fine-tuning 

does not seem to add any tangible improvement 

for VGG16 to justify additional training while we 

observed considerable improvement in retrieval 

and classification accuracy with 56.98% when they 

fine-tuned the Inception structure.

Nguyen et al. [17] introduced a novel approach 

to grade prostate malignancy using digitized histo-

pathological specimens of the prostate tissue. They 

have extracted tissue structural features from the 

gland morphology and co-occurrence texture fea-

tures from 82 regions of interest (ROI) with 620 

× 550 pixels to classify a tissue pattern into three 

major categories: benign, grade 3 carcinoma, and 

grade 4 carcinoma. The authors proposed a hier-

archical (binary) classification scheme and ob-

tained 85.6% accuracy in classifying an input tissue 

pattern into one of the three classes. 

D. Albashish et al. [18] implemented a new mul-

ticlass approach called multi-level (hierarchical) 

learning architecture (MLA), which addresses the 

binary classification tasks in the hierarchical strat-

egy. It focuses on solving the three-class classi-

fication problem in prostate cancer grading, i.e., 

Grade 3, Grade 4, and Benign. The results also 

confirmed the high efficiency of the ensemble 

framework with the MLA scheme in dealing with 

the multiclass classification problem, which results 

in 85.9% accuracy.

N. Bayramoglu et al. [19] evaluated perform-

ances of convolutional neural network models to 

classify cell nuclei in hematoxylin and eosin (H&E) 

stained histopathology images of colorectal adeno-

carcinoma. They compared four different CNN ar-

chitectures AlexNet, GenderNet, GoogLeNet, and 

VGG-16 trained on natural images and facial im-

ages using transfer learning and fine-tuning and 

got a maximum of 88.03% accuracy with fine- 

tuned VGG-16 model. 

Subrata Bhattacharjee et al. [8] developed a ma-

chine learning technique to predict the histological 

grades in prostate biopsy. To perform a multiclass 

classification, an AI-based deep learning algo-

rithm, a multichannel convolutional neural network 

(MCCNN) was developed by connecting layers 

with artificial neurons inspired by the human brain 

system. The histological grades that were used for 

the analysis are benign, grade 3, grade 4, and grade 

5. An author aimed to classify multiple patterns of 

images extracted from the whole slide image (WSI) 

of a prostate biopsy based on the Gleason grading 

system. The MCCNN model takes three input 

channels (Red, Green, and Blue) to extract the com-

putational features from each channel and con-
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           (a)                       (b)

           (c)                       (d)

Fig. 1. Sample images of each class of prostate cancer.

(a) Benign. (b) Grade 3. (c) Grade 4. (d) Grade 5.

Table 1. The arrangement of the dataset for multiclass classification. 

Data Selection From Each Class for Training

Group Benign Grade 3 Grade 4 Grade 5 Total

Train 700 700 700 700 2800

Validation 175 175 175 175 700

Test 25 25 25 25 100

Total 900 900 900 900 3600

catenate them for multiclass classification. Stain 

normalization was carried out for each histological 

grade to standardize the intensity and contrast lev-

el in the image and got an average accuracy of 

95.1%.  

In this study, MobileNet [20, 21], ResNet50 [22, 

23], and DenseNet121 [24, 25] deep convolutional 

networks were used as a transfer learning frame-

work where they were pre-trained on the Image 

Net dataset. In addition, three different fine-tuning 

strategies were applied to freeze some of their lay-

ers for comparison and increased accuracy. The 

PANDA dataset, from Kaggle [26] was used for 

the experiment to classify images into four classes. 

In this paper, the classification accuracies of the 

second model of MobileNet have been visualized 

using a non-normalized and normalized confusion 

matrix, giving more accurate results.

2. MATERIALS AND METHODS

2.1 Data Set

In this experiment, we have selected 900 good 

images for each class, which is a publicly available 

PANDA dataset on the Kaggle repository. PCa 

grade assessment (PANDA) [26] started a chal-

lenge to develop models for detecting PCa on his-

topathology images of prostate tissue samples and 

estimate the severity of the disease using the most 

extensive multi-center dataset on Gleason grading. 

Our dataset consists of 3600 patched color images 

of size 256 × 256 pixels that were extracted from 

WSI. There is a total of four classes to predict, 

some of the sample images for each class are 

shown in Fig. 1. To train the model, 80 percent of 

data samples were chosen for training (2800 im-

ages) and the remaining 20 percent (700 images) 

for validation. Further, to test the model, a total 

of 100 unseen data samples were selected (i.e., 25 

images per class). Table 1 shows the details of the 

dataset employed in this work.

2.2 Transfer Learning Methods

Transfer learning is a deep learning technique 

that stores the knowledge gained while solving one 

issue and use it to a new but related problem. 

Instead of starting the learning process from 

scratch, we can start from patterns that have been 

learned when solving a different problem. This 

way we can build accurate models in a time-saving 

way. Many pre-trained models used in transfer 
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Fig. 2. Transfer learning and fine-tuning technique.

Table 2. List of the CNN architectures.

Architecture Models Hidden Layers Classification Layer Depth

MobileNet

model_1

84

Global

Average

Pooling2D

&

Dense

86model_2

model_3

ResNet50

model_4

173 175model_5

model_6

DenseNet121

model_7

425 427model_8

model_9

learning are based on large CNN, which has 2 main 

parts convolutional base and classifier. 

Nine models based on MobileNet, ResNet50, and 

DenseNet121 were used in this research study. 

They are originally trained on the ImageNet data-

base which can classify images into thousands of 

object categories. Due to these advantages, while 

we were building models for our own needs, we 

started by removing the original classifier, next we 

added new classifier layers that fit our purpose, and 

finally, we had a fine-tuning process on our model 

according to one of the below mentioned three 

strategies. Fig. 2 demonstrates one of the transfer 

learning and fine-tuning techniques that we used 

in our experiment. Table 2 demonstrates nine mod-

els, feature extraction layers, classification layers, 

and the depth of each model. The first three models 

have been applied to 84 MobileNet layers and their 

pre-trained weights and two additional layers were 

added to the classification block. While the other 

three models were pre-trained 173 layers of Res 

Net50. Furthermore, the remaining models were 

built-in with 425 layers of DenseNet121. Finally, 

GlobalAveragePooling2D and Dense layers were 

used for the multi-class classification.

2.3 Fine Tuning

Fine-tuning is a way of utilizing or applying 
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Fig. 3. Three strategies of fine-tuning.

Table 3. List of Frozen layers and trainable parameters.

Models Depth Frozen Layers Trainable Parameters

model_1 86 84 4.100

model_2 86 80 1.065.988

model_3 86 No Frozen 3.211.076

model_4 175 173 8.196

model_5 175 160 5.528.580

model_6 175 No Frozen 23.542.788

model_7 427 425 4.100

model_8 427 250 3.939.588

model_9 427 No Frozen 6.957.956

transfer learning. There are different kinds of fine- 

tuning techniques, truncating the last layer, using 

a smaller learning rate, and freezing the weights 

of the layers are among these methods. In this pa-

per, the freezing technique is used to compare each 

model. Fig. 3 shows three strategies of freezing 

techniques used with three architectures, while 

Table 3 demonstrates a list of frozen layers and 

trainable parameters.

Freezing the convolutional base is the first 

strategy trained with model_1, model_4 and, mod-

el_7. This case illustrates the extreme condition of 

the train and freezes trade-off. The main idea is 

to remove the last fully connected layer, run the 

pre-trained model as a fixed feature extractor, and 

then use the resulting features to train a new clas-

sifier. We used the pre-trained model as a fixed 

feature extraction technique (MobileNet, ResNet50, 

and DenseNet121), which can be useful in case, we 

have less computational power or a small dataset, 

and the pre-trained model solves a problem very 

similar to the one we want to solve.

The second strategy, used for model_2, model_5, 

and model_8, is training some layers and keep the 

others frozen. Mainly, lower layers mean general 

features (problem-independent), while higher lay-
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Fig. 4. Training Accuracy of model_2.

Fig. 5. Training Loss of model_2.

ers indicate specific features (problem-dependent). 

Here, we played with that dichotomy by selecting 

how much we want to modify the weights of the 

network (a frozen layer does not change during 

training). Usually, if we have a small dataset and 

a large number of parameters, we leave more lay-

ers frozen to keep away from overfitting. In con-

trast, if the dataset is large and the number of pa-

rameters is small, we can enhance our model by 

training more layers to the new task since over-

fitting is not an issue. Therefore we have frozen 

more layers to find the average parameters, as we 

have a small and different dataset from the pre- 

trained models’ ImageNet dataset. We froze 80, 160, 

and 250 layers to get a balance between the number 

of layers and freeze that gave average parameters 

on model_2, model_5, and model_8 respectively. 

The last strategy, trained with model_3, mod-

el_6, and model_9, is to train the entire model. In 

this case, we implemented the architecture of the 

pre-trained model and trained it according to our 

dataset. Our models learned from scratch, so we 

needed a lot of computational power and more time 

compared to previous methods.

3. RESULTS AND DISCUSSION

In this section, learning graphs and confusion 

matrices are used to demonstrate the best result 

achieved from model_2. For classification, we 

trained with MobileNet, ResNet50, and DenseNet 

121 architectures, which are followed by Global 

AvaragePooling2D and Dense layers. All layers 

used ReLU activation functions. When it comes to 

the output layer, softmax activation was employed. 

The optimizer is selected to be Adam [27] with a 

learning rate of 10-4 and the loss function is chosen 

to be categorical cross-entropy. Nine different 

models were trained with three different archi-

tectures, with three models in each: training from 

scratch (random weight initialization), fine-tuning 

half layers and parameters, finally fine-tuning all 

backbone layers on ImageNet pre-trained model 

with 20 epochs.

Commonly, above mentioned strategy 1 is used 

when we have a small dataset and similar to the 

pre-trained model’s dataset, while strategy 3 is 

usually applied in case of having a large dataset, 

but different from the pre-trained model’s dataset. 

As we have, a small dataset and different from the 

pre-trained model’s ImageNet 1000 class dataset, 

strategy 2 is the most suitable for our proposed 

model. Fig. 4 and 5 approve that re-trained mod-
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Table 4. Accuracy of test dataset.

Models Samples Correct Incorrect Accuracy

model_1 100 86 14 86%

model_2 100 90 10 90%

model_3 100 87 13 87%

model_4 100 82 18 82%

model_5 100 88 12 88%

model_6 100 85 15 85%

model_7 100 82 18 82%

model_8 100 87 13 87%

model_9 100 83 17 83%

Fig. 6. Non-normalized Confusion Matrix of model_2. Fig. 7. Normalized Confusion Matrix of model_2.

el_2 with only 20 epochs represent a significant in-

crease in accuracy and decrease in loss values, 

showing better performance in early epochs. Com-

paring all re-trained models, model_2 used Mobile 

Net architecture, and pre-trained weights with 80 

frozen layers yield the highest accuracy of 93.03% 

and 91.32% and the lowest loss of 2.52% and 2.78% 

on training and validation sets, respectively. As a 

result, we prevented overfitting by balancing be-

tween the number of layers to train and freeze.  

Furthermore, Table 4 demonstrates predictions 

of 100 unseen test data and their accuracy. On the 

test set, model_2 predicted 90 images correctly and 

only making 10 mistakes out of 100 test images, 

scoring 90% as overall accuracy. Fig. 6 and 7 show 

the non-normalized and normalized confusion ma-

trices.

In Table 5, we compare the accuracy of different 

multi-class classification methods with our pro-

posed model. B. Kieffer et al. [16] got 56.98% accu-

racy on the Inception v3 classification method by 

using transfer learning and predicting four differ-

ent classes. Nguyen et al. [17] extracted tissue 

structural features from the gland morphology and 

co-occurrence texture features and classified three 

classes with obtaining 85.6% accuracy. D. Albash-

ish et al. [18] used multi-level learning architecture 

(MLA) and focused on solving classification prob-

lems in prostate cancer by categorizing the cases 

into three classes. The authors achieved 85.9% ac-
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Table 5. Comparison between the proposed method and other standard methods for the multi-class classification of 

prostate cancer grading.

Author Classification Methods Classes Accuracy

S. Bhattacharjee et al. [8] MCCNN Benign, Grade 3, Grade 4, Grade 5 95.1%

B. Kieffer et al. [16] Inception v3 Benign, Grade 3, Grade 4, Grade 5 56.9%

Nguyen et al. [17] SVM Benign, Grade 3, Grade 4 85.6%

D. Albashish et al. [18] Ensemble MLA Benign, Grade 3, Grade 4 85.9%

N. Bayramoglu et al. [19] VGG16 Benign, Grade 3, Grade 4, Grade 5 88.0%

Proposed MobileNet (model_2) Benign, Grade 3, Grade 4, Grade 5 90%

curacy that shows the high efficiency of the en-

semble framework with MLA. N. Bayramoglu et. 

al [19] performed 88.03% accuracy with transfer 

learning and fine-tuning on VGG16 architecture 

that changes learning rate according to each epoch. 

S. Bhattacharjee et. al [8], on the other hand, devel-

oped MCCNN to predict the histological grades in 

prostate biopsy and achieved an excellent accuracy 

of 95.1% with analyzing four different classes. In 

our proposed architecture, we have achieved one 

of the most satisfying accuracies of 90% by im-

plementing MobileNet (model_2) classification me-

thod that trains some layers and at the same time, 

keeps others frozen.   

4. CONCLUSION

In this paper, it was found that pre-trained deep 

learning models on the ImageNet dataset can be 

fine-tuned to improve the accuracy to classify PCa 

dataset. Three architectures and their weights 

were used and applied three different freezing 

techniques on the layers making them overall nine 

models. After re-training models with histology 

image dataset, they are evaluated by predicting 100 

unseen test images. As a result, model_2 from 

MobileNet showed the best accuracy of 90%. It is 

recommended that this model could be used in re-

al-time environments when we do not have enough 

data.

In conclusion, the proposed fine-tuning techni-

ques used in this study is also effective for solving 

the over-fitting issue in the model.
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