The main purpose of this study was to examine the mediating effect of participation motivation of continuing professional development between the level of organizational learning transfer climate and learning transfer. In the analysis of the relationship among the level of the organizational learning transfer climate, learning transfer and participation motivation of CPD, organizational learning transfer climate had indirect influence on learning transfer through participation motivation of CPD. Based upon the findings of this study, several suggestions were made to improve professional engineers' participation and learning transfer in CPD and implement future research on professional engineer's CPD.
Deep artificial neural network with transfer learning is applied to compressed sensing cardiovascular MRI. Transfer learning is a method that utilizes structure, filter kernels, and weights of the network used in prior learning for current learning or application. The transfer learning is useful in accelerating learning speed, and in generalization of the neural network when learning data is limited. From a cardiac MRI experiment, with 8 healthy volunteers, the neural network with transfer learning was able to reduce learning time by a factor of more than five compared to that with standalone learning. Using test data set, reconstructed images with transfer learning showed lower normalized mean square error and better image quality compared to those without transfer learning.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.165-165
/
2023
Streamflow prediction is a critical task in water resources management and essential for planning and decision-making purposes. However, the streamflow prediction is challenging due to the complexity and non-linear nature of hydrological processes. The transfer learning is a powerful technique that enables a model to transfer knowledge from a source domain to a target domain, improving model performance with limited data in the target domain. In this study, we apply the transfer learning using the Informer model, which is a state-of-the-art deep learning model for streamflow prediction. The model was trained on a large-scale hydrological dataset in the source basin and then fine-tuned using a smaller dataset available in the target basin to predict the streamflow in the target basin. The results demonstrate that transfer learning using the Informer model significantly outperforms the traditional machine learning models and even other deep learning models for streamflow prediction, especially when the target domain has limited data. Moreover, the results indicate the effectiveness of streamflow prediction when knowledge transfer is used to improve the generalizability of hydrologic models in data-sparse regions.
Artificial neural network is widely used for its excellent performance and implementability. However, traditional neural network needs to learn the system from scratch, with the addition of new input data, the variation of the observation environment, or the change in the form of input/output data. To resolve such a problem, the technique of transfer learning has been proposed. Transfer learning constructs a newly developed target system partially updating existing system and hence provides much more efficient learning process. Until now, transfer learning is mainly studied in the field of image processing and is not yet widely employed in acoustic data processing. In this paper, focusing on the scalability of transfer learning, we apply the concept of transfer learning to the problem of guitar chord classification and evaluate its performance. For this purpose, we build a target system of convolutional neutral network (CNN) based 48 guitar chords classification system by applying the concept of transfer learning to a source system of CNN based 24 guitar chords classification system. We show that the system with transfer learning has performance similar to that of conventional system, but it requires only half the learning time.
Journal of Korean Academy of Fundamentals of Nursing
/
v.22
no.3
/
pp.297-307
/
2015
Purpose: The purpose of this study was to identify the learning style, learning efficacy, transfer of learning, and confidence in performance competence of Core Basic Nursing Skills (CBNS) and factors influencing confidence in performance competence of CBNS by nursing students. Methods: A descriptive study design was used. Participants were 148 nursing students. Data were analyzed using SPSS 20.0 for descriptive statistics, ANCOVA, correlation and regression. Results: Learning styles of the participants were assimilator 33.11%, accommodator 26.35%, diverger 23.65%, and converger 16.89%. Learning efficacy was significantly different according to learning styles, however, transfer of learning and confidence in performance competence of CBNS were not significantly different according to learning styles. Confidence in performance competence of CBNS positively correlated with transfer of learning and learning efficacy. Transfer of learning was a significant predictor of confidence in performance competence of CBNS. Conclusion: The findings of this study indicate that transfer of learning influences confidence in performance competence of CBNS. Thus, nursing faculty should develop educational strategies to enhance and improve transfer of learning, and development of effective confidence in performance competence of CBNS programs.
The recent development of IT, consolidation of communication and multimedia technology have brought enormous changes in many organizations. Theses changes are enabling the new educational opportunities such as distance teaming and virtual class room. Recently, e-Learning has grown rapidly in business training field, In the context of companies, e-Learning has merits in terms of access convenience, costs reduction self-directed learning, reciprocity, and flexibility. In this regard, the primary purpose of this study is to investigate which factors of e-Learning influence the effectiveness of education and transfer of loaming in business organizations. Based on the prior studies of the education and business training field, research model and research hypotheses were developed. Factors studied in this paper were as follows: 1) learners' characteristics, 2) organizational support and 3) system environments. The results of our study are as follows. (1) Motivation perceived usefulness in Learner factors had an significant influence on both learning effectiveness and transfer of teaming, whereas Ability, expectation had an influence on transfer of teaming. (2) Support from peer, support from supervisor in Organization factors had an significant influence on both Loaming effectiveness and transfer of teaming, whereas support from organization had influence on learning effectiveness. (3) Appropriate contents in system circumstance had an significant influence on both teaming effectiveness and transfer of teaming, whereas interface design had an influence on learning effectiveness.
Chee, Sua Wui;Saudi, Mohd Haizam Mohd;Lee, Chong Aik
Asian Journal of Innovation and Policy
/
v.7
no.2
/
pp.310-337
/
2018
Adoption of mobile learning (m-learning) is not new in Malaysian oil and gas industry, with heavy investment into research and development to train the workers. Nevertheless, the low application of learnt skills on the job remains an emergent research area where there is a missing link on the effects of m-learning and effective organisational learning and implication on its training transfer. The result of this quantitative research revealed that all variables in m-learning were found to have a positive relationship with the effective organisational learning, and there is evidence of training transfer as a mediator of the relationship between self-directed learning, training design, work environment and effective organisational learning. However, there were some discrepancies in the extend of training transfer between trainee characteristics and organisational learning. As such, some important issues emerged which challenge the importance of evaluating workers' readiness and transfer for a successful implementation of m-learning towards developing effective organisational learning.
Purpose: This study aimed to define and clarify learning transfer in nursing. Methods: This study used a hybrid model to analyze the concept of learning transfer in nursing through three phases. For the theoretical phase, learning transfer attributes were identified through a scoping literature review. In the fieldwork phase, in-depth focus group interviews were conducted to develop attributes. Purposive sampling was performed with ten participants(five nursing students, two nurses, three nursing faculty members). In the analysis phase, the attributes and final analysis of learning transfer in nursing were extracted and integrated from the previous two phases. Results: According to the analysis, learning transfer was represented in two dimensions with eight attributes. The development of competency dimension had three attributes: 1) theory acquisition, nursing skills, professional attitude, 2) integration, and 3) analysis competency. The competency change dimension had five attributes: 1) appropriateness in patient care, 2) proficiency in patient care, 3) satisfaction, 4) achievement, and 5) confidence. Conclusion: The concept analysis might provide a basic understanding of learning transfer, a development framework toward a measurement of nursing learning transfer and effective educational nursing strategies.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.909-914
/
2024
This study suggests a quantitative evaluation of transfer learning, which is widely used in various AI fields, including image recognition for robot vision. Quantitative and qualitative analyses of results applying transfer learning are presented, but transfer learning itself is not discussed. Therefore, this study proposes a quantitative evaluation of transfer learning itself based on MNIST, a handwritten digit database. For the reference network, the change in recognition accuracy according to the depth of the transfer learning frozen layer and the ratio of transfer learning data and pre-training data is tracked. It is observed that when freezing up to the first layer and the ratio of transfer learning data is more than 3%, the recognition accuracy of more than 90% can be stably maintained. The transfer learning quantitative evaluation method of this study can be used to implement transfer learning optimized according to the network structure and type of data in the future, and will expand the scope of the use of robot vision and image analysis AI in various environments.
This study aims to test effect of transfer learning program rather than students' transfer ability. For these purpose, firstly this study design transfer learning program to apply from 'rate concept' in learning math class to 'velocity concept' in science class. Subsequently, this study is to analyze whether this program affect on 'the rate concept understanding' and 'the mathematics learning attitude'. Followings are the findings from this study. First, transfer learning program affect on improving students' rate concept understanding. Moreover, 17 among 35 students' who stay in 'ratio level' move to 'internalized ratio level'. Second, besides transfer learning program is not only cause to change students' learning attitude, this program impact on changing their learning attitude positively. The study has an important implications in that it designed new learning program that students experience transfer and test its effect.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.