• Title/Summary/Keyword: transfer function-noise model

Search Result 128, Processing Time 0.031 seconds

A Design of ANC-ALE Model Using the JP Lattie Filter (JP 격자필터를 이용한 ANC-ALE 모형 설계)

  • 정준철;심수보
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.12
    • /
    • pp.1219-1228
    • /
    • 1991
  • In the actual case, a model of noise canceller using adaptive filter has both a channel transfer function from noise source to main signal input and to noise canceller input. The previous models of noise canceller have been considered to be only one side channel transfer function. Therefore, it is proposed that a new model has two channel transfer functions and derives an optimal tranfer function of adaptive noise canceller. The adaptive filter is using the joint process lattice filter that has fast adaptive speed. The signal noise radio has been improved by a model of ANC-ALE and it is confirmed with computer simulation. Beside, a dc bias is very effective for noise cancelling, especially to the particular signal.

  • PDF

Inflow Noise Characteristics of the Sensor in Low Wave Number Region Using Transfer Function (전달함수를 이용한 저파수 영역에서의 센서 유입 소음 특성 연구)

  • Park, Ji-hye;Lee, Jongkil;Shin, Ku-kyun;Cho, Chi-yong
    • 대한공업교육학회지
    • /
    • v.34 no.1
    • /
    • pp.238-251
    • /
    • 2009
  • The noise itself that affects the sensor array is defined as the noise which happens in the place where the system is installed and the circumference noise which comes from the ocean. The array structure for detecting acoustic signal in the underwater effected turbulent layer flow noise. In this paper to design the conformal array spectral density function was introduced and several cases of flow induced noise which affect transfer function were simulated. Modified Corcos wall pressure model was used as turbulent boundary layer flow noise. The effect of noise has been reduced as integrated sum of transfer function has been reduced by decreasing elastomer thickness and density when kx is in low wave number area. Also the characteristics of transfer function by Corcos wall pressure displayed the product of frequency density function. This simulation results can be applied to the conformal array design in unmmaned underwater vehicle in the near future.

Near-field Noise-emission Modeling for Monitoring Multimedia Operations in Mobile Devices

  • Song, Eakhwan;Choi, Jieun;Lee, Young-Jun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.440-444
    • /
    • 2016
  • In this paper, an equivalent circuit model for near-field noise emission is proposed to implement a multimedia operation-monitoring system for mobile devices. The proposed model includes a magnetic field probe that captures noise emissions from multimedia components, and a transfer function for near-field noise coupling from a transmission line source to a magnetic field probe. The proposed model was empirically verified with transfer function measurements of near-field noise emissions from 10 kHz to 500 MHz. With the proposed model, a magnetic field probe was optimally designed for noise measurement on a camera module and an audio codec in a mobile device. It was demonstrated that the probe successfully captured the near-field noise emissions, depending on the operating conditions of the multimedia components, with enhanced sensitivity from a conventional reference probe.

Prediction of Powertrain Structure-borne Noise Using Hybrid Model (하이브리드 모델을 이용한 파워트레인 가진에 의한 구조 기인 소음 예측)

  • Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.12-22
    • /
    • 2007
  • This paper presents to predict the powertrain structure-borne noise which is primary resource of interior noise. As the first step, it is built up a hybrid powertrain model which is based on the real powertrain which is verified with static and dynamic properties. The methods for verifying are modal analysis and running vibration testing which are experimentally implemented. Based on the Hybrid powertrain component model, an initial predictive assembly model is simulated. As the second step, the characteristic transfer functions are measured that are dynamic stiffness of rubber mounts and vibro-acoustic transfer function based on the acoustic reciprocity. Several techniques utilizing special experimental devices have been proposed for this research. Finally, the structure-borne noise by powertrain will be predict and verify with dynamic simulation and experiment.

  • PDF

Statistical Analysis of Transfer Function Models with Conditional Heteroscedasticity

  • Baek, J.S.;Sohn, K.T.;Hwang, S.Y.
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.199-212
    • /
    • 2002
  • This article introduces transfer function model (TFM) with conditional heteroscedasticity where ARCH concept is built into the traditional TFM of Box and Jenkins (1976). Model building strategies such as identification, estimation and diagnostics of the model are discussed and are illustrated via empirical study including simulated data and real data as well. Comparisons with the classical TFM are also made.

Transfer Function Estimation Using a modified Wavelet shrinkage (수정된 웨이블렛 축소 기법을 이용한 전달함수의 추정)

  • 김윤영;홍진철;이남용
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.769-774
    • /
    • 2000
  • The purpose of the work is to present successful applications of a modified wavelet shrinkage method for the accurate and fast estimation of a transfer function. Although the experimental process of determining a transfer function introduces not only Gaussian but also non-Gaussian noises, most existing estimation methods are based only on a Gaussian noise model. To overcome this limitation, we propose to employ a modified wavelet shrinkage method in which L1 -based median filtering and L2 -based wavelet shrinkage are applied repeatedly. The underlying theory behind this approach is briefly explained and the superior performance of this modified wavelet shrinkage technique is demonstrated by a numerical example.

  • PDF

Measurement of Dynamic Properties of Concrete Structures Using Beam Transfer Function Methods (보 전달함수법을 이용한 콘크리트 구조물의 동특성 측정)

  • Kim, Seung-Joon;Yoo, Seung-Yup;Jeong, Yeong;Jun, Jin-Yong;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.950-953
    • /
    • 2006
  • The floor impact noise of concrete structures in apartments buildings is affected from the flexural wave propagation characteristics. Accordingly, the measurement of wave propagation characteristics is required for suggestion of efficient method to reduce the impact noise. The purpose of this article is to propose an experimental technique to measure dynamic properties of concrete structures. The method was proposed using the flexural wave propagation characteristics. Wave speeds, bending stiffness and their loss factors are estimated from which the vibration dissipation capabilities are investigated. Several different concrete beam structures were custom-built for measurement. The damping treatments using viscoelastic materials for reducing noise generation are also tested. The beam transfer function of the damped beam is predicted using the compressional damping model from which the mechanism of the vibration energy dissipation is investigated.

  • PDF

Single Channel Active Noise Control using Adaptive Model (적응모델을 이용한 단일채널 능동 소음제어)

  • Kim, Yeong-Dal;Lee, Min-Myeong;Jeong, Chang-Gyeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.442-450
    • /
    • 2000
  • Active noise control is an approach to noise reduction in which a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and a time-adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Opppenheim model assumed that transfer function characteristics from the canceling source to the error sensor is only propagation delay. But this paper proposes a modified Oppenheim model by considering transfer characteristics of acoustic device and noise path. This transfer characteristics is adaptively cancelled by adaptive model. This is proved by computer simulation with artifically generated random noise and sine wave noise. The details of the proposed architecture, and theoretical simulation and experimental results of the noise cancellation system for three dimension enclosure are presented in the paper.

  • PDF

Performance Analysis of Adaptive Bandwidth PLL According to Board Design (보드 설계에 따른 Adaptive Bandwidth PLL의 성능 분석)

  • Son, Young-Sang;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.146-153
    • /
    • 2008
  • In this paper, a integrated phase-locked loop(PLL) as a clock multiphase generator for a high speed serial link is designed. The designed PLL keeps the same bandwidth and damping factor by using programmable current mirror in the whole operation frequency range. Also, the close-loop transfer function and VCO's phase-noise transfer function of the designed PLL are obtained with circuit netlists. The self impedance on board-mounted chip is calculated according to sizes and positions of decoupling capacitors. Especially, the detailed self-impedance analysis is carried out between frequency ranges represented the maximum gain in the close-loop transfer function and the maximum gain in the VCO's phase noise transfer function. We shows PLL's jitter characteristics by decoupling capacitor's sizes and positions from this result. The designed PLL has the wide operating range of 0.4GHz to 2GHz in operating voltage of 1.8V and it is designed 0.18-um CMOS process. The reference clock is 100MHz and PLL power consumption is 17.28mW in 1.2GHz.

Interior Noise Reduction of a Passenger Car using Panel Contribution Analysis (패널 기여도 분석에 의한 승용차의 실내 소음 저감)

  • 이두호;김태정
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.785-794
    • /
    • 1999
  • The panel contribution analysis to reduce interior booming noise of a passenger car is carried out using both experimental method and numerical one. The accelerations of panels are measured on the outer surface of car body during operation. The acoustic characteristic of cavity is represented by two different ways. One is the acoustic transfer function obtained by experiment with reciprocal manner. The other is the boundary element model and numerical results of the model are calculated using SYSNOISE. The results from numerical method show more good agreement with measured sound pressure levels than the experimental one. Contributions of panels for interior noise are ranked and structure of the car is reinforced according to the results, which shows that the panel contribution analysis is a powerful tool to lessen structure-borne noise of passenger vehicle.

  • PDF