• 제목/요약/키워드: transdermal delivery

검색결과 183건 처리시간 0.023초

플라즈마-초음파 자극에 의한 화장품의 피부 침투 증진 연구 (Study for Enhanced Skin Penetration of Cosmetics by Plasma-Sono Stimuli)

  • 황윤호;조혜연;박유진;장휘진;박상효;기재홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권4호
    • /
    • pp.275-283
    • /
    • 2023
  • The demand for skincare has increased due to the end of the COVID-19 pandemic, leading to a focus on skincare devices and technologies designed to improve the delivery of cosmetics. Among these technologies, skincare medical devices that utilize plasma therapy (Plasma) and sonophoresis (Sono) are commonly used in dermatology clinics. However, there is still a lack of quantitative analysis for transdermal absorption effects of Plasma and Sono skincare medical devices. In this study, we quantified enhanced transdermal absorption effects of Plasma and Sono devices through in-silico and ex-vivo studies. The Sono treatment demonstrated an increased transdermal absorption effect, showing a 10~13% difference in penetration compared to the control group in the in-silico experiment, and 159% and 184% increase in the ex-vivo experiment. The Plasma treatment revealed increased transdermal absorption effects, with a 1.0~2.5% penetration difference in the in-silico experiment, and a 124% increase in the ex-vivo experiment compared to the control group. We also observed a synergistic effect from the combined treatment of Plasma and Sono, as indicated by the highest increases of 197% and 242% in penetration. Furthermore, we have determined the optimal device settings and treatment conditions for Plasma-Sono skincare medical devices. Notably, higher on/off durations (Intensity levels) and longer Sono treatments resulted in greater transdermal absorption effects.

미세바늘제작 및 배열을 이용한 반 능동형 가진 약물주입기구 설계 (Semi-active Vibration Drug Delivery Device Design using a Micro-needle Fabrication and Array)

  • 성연욱;박진호;이혜진
    • 융복합기술연구소 논문집
    • /
    • 제1권1호
    • /
    • pp.48-51
    • /
    • 2011
  • Transdermal drug delivery device is a method of drug delivery through the skin. Skin has a very large area, so it is attractive route to drug delivery. When drug delivery through the skin, microneedle has a advantage that painless, constant drug deliver and penetration efficient; nevertheless the cost is expensive because fabrication process need a particular equipment and not suitable in mass production. This study shows microneedle fabrication process using convergence of general MEMS process and dicing process that can make 3-D sharp microneedle tip and this fabrication process suitable for mass production.

  • PDF

전류를 이용한 Levodopa의 경피전달: 낮은 pH에서의 투과 (Electrotransport of Levodopa through Skin: Permeation at Low pH)

  • 조정은;오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권1호
    • /
    • pp.23-31
    • /
    • 2010
  • In our previous work on levodopa delivery at pH 2.5 using iontophoresis, we found that cathodal delivery showed higher permeation than anodal delivery and electroosmosis plays more dominant role than electrorepulsion. In this work, we studied the transdermal transport of levodopa at very low pH (pH=1.0) where all levodopa molecules are cations, and evaluated some factors which affect the transdermal transport. The transport study at pH 2.5 was also conducted for comparison. The contribution of electrorepulsion and electroosmosis on flux was also evaluated. Using stable aqueous solution, the effect of electrode polarity, current density, current type and drug concentration on transport through skin were studied and the results were compared. We also investigated the iontophoretic flux from hydroxypropyl cellulose (HPC) hydrogel containing levodopa. In vitro flux study was performed at $33^{\circ}C$, using side-by-side diffusion cell. Full thickness hairless mouse skin were used. Current densities applied were 0.2, 0.4 or $0.6\;mA/cm^2$. Contrary to the pH 2.5 result, anodal delivery showed higher flux, indicating that electrorepulsion is the dominant force for the transport, overcoming the electroosmotic flow which is acting against the direction of electrorepulsion. Cumulative amount of levodopa transported was increased as the current density or drug concentration was increased. When amount of current dose was constant, continuous current was more beneficial than pulsed current in promoting levodopa permeation. Similar transport results were obtained when hydrogel was used as the donor phase. These results indicate that iontophoretic delivery of zwitterion such as levodopa is much complicated than that can be expected from small ionic molecules. The results also indicate that, only at very low pH like pH 1.0, electrorepulsion can be the dominant force over the electroosmosis in the levodopa transport.

Alzheimer형 치매치료제인 Tacrine의 경피 투과 특성 연구 (Percutaneous Absorption Characteristics of Tacrine in Alzheimer-type Dementia Treatment)

  • 이한섭
    • 한국응용과학기술학회지
    • /
    • 제29권4호
    • /
    • pp.552-560
    • /
    • 2012
  • 약물 전달 시스템은 약물의 방출 프로파일, 흡수, 분배 및 제품의 효율성과 안전성, 환자의 편의성과 협조를 향상시키기 위한 제거를 개선하는 명백하게 보호화된 공식화 기술이다. 가장 일반적으로 쓰이는 transdermal 시스템은 다양한 종류의 기술을 사용하는 skin patch다. 다른 투약 방법과 달리, transdermal 시스템은 장기간 사용이 가능하다. 또한, 부작용이 생길 경우, 약물 투약의 중단이 가능하다. karaya gum and locust bean gum(LBG)/water-soluble chitosan oligomer(WSCO)과 같은 Polysaccharide를 TDS의 기본 물질로 선택하였다. 또한, 이 polymers들은 tacrine 물질, 강화제로 규정되어진다. 이러한 polysaccharide 중에서, karaya gum matrix의 침투율은 lipophilic drug in vitro 와 같은 tacrine 내에서 가장 빠르다. 우리는 glycerin, PEG 400, and PEG 800를 강화제로 사용하였다. 그러므로, transdermal의 tacrine 흡수율은 vehicle 구성을 바꿈으로써, 혹은 침투 강화제를 사용함으로써 향상되었을 것이다. 특히, vehicle이 스스로의 효과를 강화하는 것과 더불어, vehicle에 강화제를 첨가함으로써 높은 침투 효율이 얻어질 것으로 기대된다.

이온토포레시스를 이용한 프로스타글란딘 $E_1$의 경피흡수 (lontophoretic Delivery of Prostaglandin $E_1$)

  • 신동숙;오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제29권2호
    • /
    • pp.111-115
    • /
    • 1999
  • We have studied the transdermal flux of prostaglandin $E_1$ $(PGE_1)$ from a hydrogel patch through hairless mouse skin, to test the possibility of developing a transdermal delivery system. Karaya gum patch containing $PGE_1$ was prepared by casting method. $PGE_1$ was stable in the patch for 10 weeks. The effect of current application, enhancer (propylene glycol monolaurate : PGML), adhesive and patch thickness on the flux was studied using side-by-side diffusion cell. Passive flux of $PGE_1$ was negligible. Cathodal delivery increased the flux about 20 fold. As the concentrations of PGML increased, flux increased. When 5% PGML was used as the enhancer, maximum flux by cathodal iontophoresis was $55\;{\mu}g/cm^2\;hr$. It increased about 2 folds to $100\;{\mu}g/cm^2\;hr$, when the amount of PGML used was 9%. Large increase in flux and the decrease in time to reach maximum flux were observed when the skin was pretreated with neat PGML (maximum flux obtained was about $200\;{\mu}g/cm^2\;hr$). Use of adhesive decreased the flux significantly. To the contrary of our expectation, increase in current density decreased the flux. These flux data together with the stability data indicate that, though the onset of sufficient delivery occur after 1-2 hours of application, therapeutic amount of $PGE_1$ can be delivered through skin using iontophoresis and penetration enhancer.

  • PDF

무모생쥐 피부에 리제드로네이트 소디움의 이온토포레시스 경피전달 (Enhanced Iontophoretic Delivery of Risedronate Sodium Across Hairless Mice Skin)

  • 황인영;이미정;정석현;정서영;조선행;길영식;정상영;신병철
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권2호
    • /
    • pp.79-84
    • /
    • 2010
  • Osteoporosis was traditionally defined by the occurrence of nontraumatic fractures, especially of the spine, in the setting of low bone mass. Bisphosphonates are an important group of therapeutic agents for the management of osteoporosis, as they inhibit bone resorption and increase bone density, thereby potentially decreasing fracture risk. Risedronate sodium is a bisphosphonate class used by oral formulation. In this study, risedronate was transdermally delivered by iontophoresis. Effects of polarity, pH, current density, and drug concentration were studied using a side-by-side diffusion cell including the hairless mice skin. In addition we studied effect of enhancers. The flux was evaluated by HPLC/UV system. The amount of transported drug under iontophoretic delivery was approximately 186 fold higher than that under passive delivery. Flux was proportional to the increase of drug concentration and current density. The flux was observed about 0.68mg/$cm^2$ when the amout of Propyleneglycol monolaurate (PGML) used 1% as enhancer. Results indicated that iontophoresis is an effective method for transdermal administration of risedronate sodium

Effect of Vehicles and Enhancers on the in vitro Skin Penetration of Aspalatone and Its Enzymatic Degradation Across Rat Skins

  • Gwak, Hye-Sun;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • 제24권6호
    • /
    • pp.572-577
    • /
    • 2001
  • The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this studys hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient, the concentration of PC that showed the highest flux for AM across the hairless mouse skin was found to be 40%. The cumulative amount permeated at 48 h, however, appear inadequate, even when the PC concentration was employed. To identify a suitable absorption enhancer and its optimal concentration for AM, a number of absorption enhancers and a variety of concentration were screened for the increase in transdermal flux of AM. Amongst these, linoleic acid (LOA) at the concentration of 5% was found to have the largest enhancement factor (i.e., 132). However, a further increase in AM flux was not found in the fatty acid concentration greater than 5%, indicating the enhancement effect is in a bell-shaped currie. In a study of the effect of AM concentration on the permeation, there was no difference in the permeation rate between 0.5 and 1% for AM, below its saturated concentration. At the donor concentration of 2%, over the saturated condition, the flux of AM was markedly increased. A considerable degradation of AM was found during permeation studies, and the extent was correlated with protein concentrations in the epidermal and serosal extracts, and skin homogenates. In rat dorsal skins, the protein concentration decreased in the rank order of skin homogenate > serosal extract > epidermal extract. Estimated first order degradation rate constants were $6.15{\pm}0.14,{\;}0.57{\pm}0.02{\;}and{\;}0.011{\pm}{\;}0.004{\;}h^{-1}$ for skin homogenate, serosal extract and epidermal extract, respectively. Therefore, it appeared that AM was hydrolyzed to some extent into salicylmaltol by esterases in the dermal and subcutaneous tissues of skin. taken together, our data indicated that transdermal delivery of AM is feasible when the combination of PC and LOA is used as a vehicle. However, since AM is not metabolically stable, acceptable degradation inhibitors may be nervessary to fully realize the transdermal delivery of the drug.

  • PDF

Nanodiamonds Conjugated with Nonsteroidal Anti-inflammatory Drugs for Transdermal Delivery

  • Rhee, Changkyu;Puzyr, Alexey P.;Burov, Andrey E.;Burova, Olga G.;Kim, Whungwhoe;Bondar, Vladimir S.
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.459-465
    • /
    • 2018
  • Most commercially available detonation nanodiamonds (DNDs) require further processing to qualify for use in biomedical applications, as they often contain many impurities and exhibit poor dispersibility in aqueous media. In this work, DNDs are modified to improve purity and impart a high colloidal stability to the particles. The dispersive and adsorption properties of modified DNDs are evaluated in terms of the suitability of DNDs as carriers for non-steroidal anti-inflammatory drugs (NSAIDs) in transdermal delivery. The study of adsorption on strongly positively and strongly negatively charged DNDs showed their high loading capacity for NSAIDs, and a pronounced relationship between the drugs and the particles' charges. Experiments on long-term desorption carried out with DND/NSAID complexes indicate that the nanoparticles exert a sustained effect on the drug release process.

Levodopa의 이온토포레시스 경피전달: 올레인산 아이크로에멀젼 및 에탄올의 투과증진 (Iontophoretic Delivery of Levodopa: Permeation Enhancement by Oleic Acid Microemulsion and Ethanol)

  • 정신애;곽혜선;전인구;오승열
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권6호
    • /
    • pp.373-380
    • /
    • 2008
  • In order to develop optimal formulation and iontophoresis condition for the transdermal delivery of levodopa, we have evaluated the effect of two permeation enhancers, ethanol and oleic acid in microemulsion, on transdermal delivery of levodopa. In vitro flux studies were performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Current density applied was $0.4\;mA/cm^2$ and current was off after 6 hours application. Levodopa was analysed by HPLC at 280 nm. The o/w microemulsions of oleic acid in buffer solution (pH 2.5 & 4.5) were prepared using oleic acid, Tween 80 and ethanol. The existence of microemulsion regions were investigated in pseudo-ternary phase diagrams. Contrary to our expectation, cumulative amount of levodopa transported from microemulsion (pH 2.5) for 10 hours was similar to that from aqueous solution in all delivery methods (passive, anodal and cathodal). When pH of the micro-emulsion was pH 4.5, cumulative amount of levodopa transported for 10 hours increased about 40% (anodal) to 50% (cathodal), when compared to that from aqueous solution. Flux from pH 4.5 microemulsion showed higher value than that from pH 2.5 in all delivery methods. These results seem to indicate that electroosmosis plays more dominant role than electrorepulsion in the flux of levodopa at pH 2.5. The effect of ethanol on iontophoretic flux was studied using pH 2.5 phosphate buffer solution containing 3% or 5% (v/v) ethanol. Flux enhancement was observed in passive and anodal delivery as the concentration of the ethanol increased. Without ethanol, cathodal delivery showed higher flux than anodal delivery. Anodal delivery increased the cumulative amount of levodopa transported 1.6 fold by 5% ethanol after 10 hours. However, in cathodal delivery, no flux enhancement of levodopa was observed during current application and only marginal increase in cumulative amount transported after 10 hours was observed by 5% ethanol. These results seem to be related to the decrease in dielectric constant of the medium and the lipid extraction of the ethanol, which decrease the electroosmotic flow, and thus decrease the flux. Overall, the results provide important insights into the role of electroosmosis and electrorepulsion in the transport of levodopa through skin, and provide some useful informations for optimal formulation for levodopa.

니오솜을 이용한 $[^{3}H]$아시클로버의 경피투과 (Transdermal Permeation of $[{^3}H]Acyclovir$ Using Niosome)

  • 박새해;이순영;용철순
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권1호
    • /
    • pp.43-50
    • /
    • 1998
  • Niosomes are vesicles formed from synthetic non-ionic surfactants, offering an alternative to chemically unstable and expensive liposomes as a drug carrier. Non-ionic surfactant and cholesterol mixture film leads to the formation of vesicular system by hydration with sonication method. The formation of niosome was ascertained by negative staining of TEM. The entrapment efficiency of niosomal suspension was gradually increased with increasing the ratio of cholesterol to surfactant. It was found that the niosome with 6 : 4 (polyoxyethylene 2-cetyl ether: cholesterol) ratio was more stable than those with other ratios. The topical application of acyclovir(ACV) in the treatment of herpes simplex virus type 1(HSV-1) skin disease has a long history. There are an increasing number of reports, however, in which topical ACV therapy is not as effective as oral administration. Lack of efficacy with topical ACV has been hypothesized to reflect the inadequate delivery of drug to the skin. We investigated the permeation of niosome containing $[^{3}H]ACV$ in hairless mouse skin using Franz diffusion cell model. Permeation coefficient(P) of aqueous ACV was $6.7{\times}10^{-4}\;(cm/hr)$ and that of ACV in niosome was $23.4{\times}10^{-4}\;(cm/hr)$, suggesting about 3.5 times increase in the transdermal permeation.

  • PDF