• Title/Summary/Keyword: transdermal delivery

Search Result 182, Processing Time 0.023 seconds

Formulation and Evaluation of Transdermal Patch Containing Sibutramine

  • Subedi, Robhash Kusam;Jang, Jun-Ho;Kim, Jae-Il;Park, Young-Joon;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • Sibutramine is a serotonin-norepinephrine reuptake inhibitor indicated for the management of obesity in conjunction with a reduced calorie diet. The oral administration of sibutramine is followed by its dose-related side effects. In this study, sibutramine was formulated into drug in adhesive (DIA) patches in an attempt to overcome these problems. The effects of different formulation variables including pressure-sensitive adhesive (PSA), loading amount of drug, thickness of matrix and enhancer on the skin permeation of the drug were evaluated using excised hairless mouse skin. In the acrylic adhesive with carboxyl functional group, low release of sibutramine was observed due to the strong interaction between carboxyl group of adhesive and amine group of sibutramine. The acrylic adhesive without functional group provided good adhesion force and allowed high drug loading. Changing drug load as well as thickness of the matrix was found to alter permeation rate. $Crovol^{(R)}$ PK40 and $Crovol^{(R)}$ A40, were found to be effective enhancers for sibutramine. The optimized patch contained 20% sibutramine, and 5% $Crovol^{(R)}$ A40 as permeation enhancer, in $80\;{\mu}m$ thick Duro-$Tak^{(R)}$ 87-9301 matrix.

Preparation and Evaluation of Cubic Liquid Crystalline Phase Gel and Cubosome containing Polyethoxylated Retinamide (폴리에톡시레이티드레틴아마이드를 함유한 입방상 액정 젤 및 큐보좀의 제조 및 평가)

  • Kyong, Kee-Yeol;Jee, Ung-Kil;Cho, Wan-Goo
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.2
    • /
    • pp.85-94
    • /
    • 2007
  • The objective of this study is to prepare a stable delivery systems containing polyethoxylated retinamide(PERA) - derivatives of retinoic acid, effective anti-wrinkle and anti-acne agent. Cubic liquid crystalline phase gel (CLCPG) and cubosomes containing various concentrations of PERA were prepared to investigate the physicochemical properties. Furthermore, stability and transdermal absorption efficacy of the CLCPG containing PERA were investigated in comparison with oil-in-water (O/W) emulsions which are predominantly used as a topical formulation. CLCPG increase the stability of PERA in comparison with O/W emulsion. For tropical application, CLCPG containing PERA shows higher moisturizing effect than that of O/W emulsion. In skin permeation test, CLCPG shows higher PERA deposit on epidermis. With its specific physicochemical property caused by the glyceryl oleate, CLCPG itself could be used for stabilizer of various actives and applied as an effective delivery system for topical application. Cubosome, nano-sized dispersed CLCPG, is also expected to be applied in a various field of industry like food, cosmetics and pharmaceuticals.

Phonophoretic Delivery of Piroxicam (초음파를 이용한 피록시캄의 경피흡수)

  • Chung, Kyu-Ho;Kim, Young-Il;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.259-265
    • /
    • 2002
  • Piroxicam is one of the NSAID, which is used in the systemic and topical treatment of a variety of inflammatory conditions. Conventionally, for topical use, the drug is formulated in gel. We designed an phonophoretic drug delivery system to investigate the piroxicam permeability and the influence of ultrasound application (continuous mode, pulsed mode), frequency (1.0 MHz, 3.0 MHz) and intensity $(1.0\;w/cm^2,\;1.5\;w/cm^2,\;2.0\;w/cm^2)$ with 0.5% piroxicam gel. Per cutaneous absorption studies were performed in vitro models to determine the rate of drug absorption via the skin. Permeation study using hairless mouse skin was performed at $37^{\circ}C$ using buffered saline (pH 7.4, 10% propylene glycol solution) as the receptor solution. Anti-inflammatory activity was determined using carrageenan-induced foot edema model in rat. A pronounced effect of ultrasound on the skin absorption of the piroxicam was observed at all ultrasound energy level studied. Ultrasound was carried out for 10 hr. The highest permeation was observed at intensity of $2.0\;w/cm^2$, frequency of 1.0 MHz and continuous output. The inclusion of phonophoresis was found to improve significantly the skin permeation in vitro and the anti-inflammatory activity in vivo.

A Numerical Study of the Performance of a Contoured Shock Tube for Needle-free Drug Delivery

  • Rasel, Md. Alim Iftekhar;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.2
    • /
    • pp.32-38
    • /
    • 2012
  • In recent years a unique drug delivery system named as the transdermal drug delivery system has been developed which can deliver drug particles to the human skin without using any external needle. The solid drug particles are accelerated by means of high speed gas flow through a shock tube imparting enough momentum so that particles can penetrate through the outer layer of the skin. Different systems have been tried and tested in order to make it more convenient for clinical use. One of them is the contoured shock tube system (CST). The contoured shock tube consists of a classical shock tube connected with a correctly expanded supersonic nozzle. A set of bursting membrane are placed upstream of the nozzle section which retains the drug particle as well as initiates the gas flow (act as a diaphragm in a shock tube). The key feature of the CST system is it can deliver particles with a controllable velocity and spatial distribution. The flow dynamics of the contoured shock tube is analyzed numerically using computational fluid dynamics (CFD). To validate the numerical approach pressure histories in different sections on the CST are compared with the experimental results. The key features of the flow field have been studied and analyzed in details. To investigate the performance of the CST system flow behavior through the shock tube under different operating conditions are also observed.

Development of Porous Cellulose Hydrogel for Enhanced Transdermal Delivery of Liquiritin and Liquiritigenin as Licorice Flavonoids (감초 플라보노이드 Liquiritin 및 Liquiritigenin을 담지한 피부전달체인 셀룰로오스 다공성 하이드로젤 제형 개발)

  • Kim, Su Ji;Kwon, Soon Sik;Yu, Eun Ryeong;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.676-681
    • /
    • 2014
  • Licorice, widely used as a herbal medicine, has flavonoids such as liquiritin and its aglycone, liquiritigenin that show anti-oxidant and anti-inflammatory properties. Licorice flavonoid-loaded cellulose hydrogels were prepared as carriers for skin drug delivery, and their properties were investigated. The porous cellulose hydrogel was made by reacting cellulose with epichlorohydrin as a cross-linking agent in NaOH/urea(1~10%) solutions. Through studies on the rheological properties and water uptake of the hydrogel, a NaOH/urea(6%) solution was established as being optimum for the synthesis of the cellulose hydrogel containing liquiritin and liquiritigenin. Scanning electron microscopy (SEM) observations of a cross-section of the prepared hydrogel indicated its porosity. In particular, in skin permeation experiments using a Franz diffusion cell, hydrogel containing the licorice flavonoids showed remarkable transdermal permeation compared to the control group. These results indicate that porous cellulose hydrogel is a potential drug delivery system to enhance the skin permeation of licorice flavonoids.

Transdermal Delivery of Quercetin Using Elastic Liposomes: Preparation, Characterization and In Vitro Skin Permeation Study (탄성 리포좀을 사용한 쿼세틴의 경피 전달: 제조, 특성 그리고 In Vitro 피부 투과 연구)

  • Park, Soo Nam;Lim, Myoung Sun;Park, Min A;Kwon, Soon Sik;Han, Seat Byeol
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.705-711
    • /
    • 2012
  • In this study, the elastic liposome consisted of egg phospholipids and edge activator ($Tego^{(R)}$ care 450) was prepared in order to supplement the defect of the conventional liposome. We prepared elastic liposome containing quercetin, known as natural antioxidant, and evaluated the vesicles size, elasticity, loading efficiency, stability, and in vitro skin permeation. The mean diameter of quercetin loaded elastic liposome formulations ranged between 208.2~303.4 nm and loading efficiency was observed 64.1~87.5%. The highest loading efficiency (87.5%) and deformability (28.3) were observed at the optimal ratio of 90 : 10 (egg phospholipids : $Tego^{(R)}$ care 450) among 0.1% quercetin loaded elastic liposome formulations. The elastic liposome formulation was selected for further transdermal permeation study. The elastic liposome ($129.9{\mu}g/cm^2$) exhibited more skin permeability than general liposome ($114.8{\mu}g/cm^2$) and 1,3-butylene glycol ($75.1{\mu}g/cm^2$) solution. This results suggest that the elastic liposome formulation using $Tego^{(R)}$ care 450 as a major edge activator could be useful for the delivery of active ingredient through the skin transdermal.

The Effect of Enhancer on the Penetration of Indapamide through Hairless Mouse Skin (경피흡수촉진제의 영향에 따른 인다파마이드의 피부투과)

  • Seo, Hui;Jeung, Sang-Young;Park, Ji-Seon;Shin, Byung-Cheol;Hwang, Sung-Joo;Cho, Sun-Hang
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.4
    • /
    • pp.237-242
    • /
    • 2007
  • The chemical formula of indapamide is 3-(aminosulfonyl)-4-chloro-N-(2,3-dihydro-2-methyl-1H-indol-l-yl)-benzamide, Indapamide is an oral antipertensive diuretic agent indicated for the treatment of hypertensive and edema. Indapamide inhibits carbonic anhydrase enzyme. Transdermal drug delivery systems, as compared to their corresponding classical oral or injectable dosage form counterparts, offer many advantages. The most important advantages are improved systemic bioavailability of the pharmaceutical active ingredients (PAI), because the first-pass metabolism by the liver and digestive system are avoided; and the controlled, constant drug delivery profile (that is, controlled zero-order absorption). Also of importance is the reduced dose frequency compared to the conventional oral dosage forms (that is, once-a-day, twice-a-week or once-a-week). Other benefits include longer duration of therapeutic action from a single application, and reversible action. For example, patches can be removed to reverse any adverse effects that may be caused by overdosing. In order to evaluate the effects of vehicles and penetration enhancers on skin permeation of Indapamide, the skin permeation rates of Indapamide from vehicles of different composition were determined using Franz cells fitted with excised hairless skins. Solubility of Indapamide in various solvents was investigated to select a vehicle suitable for the percutaneous absorption of Indapamide, The solvents used were Tween80, Tween20, Labrasol, Lauroglycol90 (LG90) and Peceol. Lauroglycol90 increase the permeability of indapamide approximately 3.75-fold compared with the control. Tween80, Tween20, Labrasol, Lauroglycol90 (LG90) and Peceol showed flux of $0.06ug/cm^2/hr,\;0.4ug/cm^2/hr,\;0.21ug/cm^2/hr,\;0.72ug/cm^2/hr,\;0.29ug/cm^2/hr$, respectively.

Laser Induced Microjet Drug Delivery System: Drug Permeation Depending on Laser Wavelength and Pulse Duration (레이저 유도 마이크로젯을 활용한 약물 전달 방식: 레이저 파장 및 펄스길이에 따른 약물 침투 분석)

  • Jang, Hun jae;Ham, Hwi chan;Yoh, Jai ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.463-468
    • /
    • 2017
  • For transdermal drug delivery, needless injection system is composed of laser and microjet injector. Main mechanism of microjet injector is the laser-induced bubble. Nd:YAG and Er:YAG laser are used as a power source. Laser parameters such as pulse duration and wavelength are considered, which are core parameters to control the bubble motion. The Nd:YAG laser, pulse duration is short than bubble life time making cavitation like bubble while in Er:YAG laser, long pulse duration and high absorption in water drive bubble as a boiling bubble. Detailed motion of bubble and microjet is captured by the high speed camera. So it is observed that microjet characteristics are determined by the bubble behavior. The performance of drug delivery system is evaluated by fluorescent staining of guinea pig skin.

Innovative Modeling of Explosive Shock Wave Assisted Drug Delivery (고에너지물질에 의한 약물 전달 시스템 연구)

  • Yoh, Jai-Ick;Kim, Ki-Hong;Lee, Kyung-Cheol;Lee, Hyun-Hee;Park, Kyoung-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.9-13
    • /
    • 2006
  • Recent advances in energetic materials modeling and high-resolution hydrocode simulation enable enhanced computational analysis of bio-medical treatments that utilize high-pressure shock waves. Of particular interest is in designing devices that use such technology in medical treatments. For example, the generated micro shock waves with peak pressure on orders of 10 GPa can be used for treatments such as kidney stone removal, transdermal micro-particle delivery, and cancer cell removal. In this work, we present a new computational methodology for applying the high explosive dynamics to bio-medical treatments by making use of high pressure shock physics and multi-material wave interactions. The preliminary calculations conducted by the in-house code, GIBBS2D, captures various features that are observed from the actual experiments under the similar test conditions. We expect to gain novel insights in applying explosive shock wave physics to the bio-medical science involving drug injection. Our forthcoming papers will illustrate the quantitative comparison of the modeled results against the experimental data.

  • PDF

Enhanced Transdermal Delivery of Pranoprofen from the Bioadhesive Gels

  • Shin, Sang-Chul;Cho, Cheong-Weon
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.928-933
    • /
    • 2006
  • Percutaneous delivery of NSAIDs has advantages of avoiding hepatic first pass effect and delivering the drug for extended period of time at a sustained, concentrated level at the inflammation site that mainly acts at the joint and the related regions. To develop the new topical formulations of pranoprofen that have suitable bioadhesion, the gel was formulated using hydroxypropyl methylcellulose (HPMC) and poloxamer 407. The effects of temperature on drug release was performed at $32^{\circ}C$, $37^{\circ}C$ and $42^{\circ}C$ according to drug concentration of 0.04%, 0.08%, 0.12%, 0.16%, and 0.2% (w/w) using synthetic cellulose membrane at $37{\pm}0.5^{\circ}C$. The increase of temperature showed the increased drug release. The activation energy (Ea), which were calculated from the slope of lop P versus 1000/T plots was 11.22 kcal/ mol for 0.04%, 10.79 kcal/mol for 0.08%, 10.41 kcal/mol for 0.12% and 8.88 kcal/mol for 0.16% loading dose from the pranoprofen gel. To increase the drug permeation, some kinds of penetration enhancers such as the ethylene glycols, the propylene glycols, the glycerides, the non-ionic surfactants and the fatty acids were incorporated in the gel formulation. Among the various enhancers used, propylene glycol mono laurate showed the highest enhancing effects with the enhancement factor of 2.74. The results of this study suggest that development of topical gel formulation of pranoprofen containing an enhancer is feasible.