• Title/Summary/Keyword: transceiver

Search Result 761, Processing Time 0.028 seconds

Doppler Radar System for Long Range Detection of Respiration and Heart Rate (원거리에서 측정 가능한 호흡 및 심박 수 측정을 위한 도플러 레이더 시스템)

  • Lee, Jee-Hoon;Kim, Ki-Beom;Park, Seong-Ook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.418-425
    • /
    • 2014
  • This paper presents a Ku-Band Doppler Radar System to measure respiration and heart rate. It was measured by using simultaneous radar and ECG(Electrocardiogram). Arctangent demodulation without dc offset compensation can be applied to transmitted I/Q(In-phase & Quadrature-phase) signal in order to improve the RMSE(Root Mean Square Error) about 50 %. The power leaked to receiving antenna from the transmitting antenna is always generated because of continuously opening the transceiver of CW(Continuous Wave) Doppler radar. As the output power increase, leakage power has an effect on the SNR(Signal-to-Noise Ratio) of the system. Therefore, in this paper, leakage cancellation technique that adds the signal having the opposite phase of the leakage power to the leakage power was implemented in order to minimize the decline of receiver sensitivity. By applying the leakage cancellation techniques described above, it is possible to measure the heart rate and respiration of the human at a distance of up to 35 m. the heart rate of the measured data at a distance of 35 m accords with the heart rate extracted from the ECG data.

Four Channel Step Up DC-DC Converter for Capacitive SP4T RF MEMS Switch Application (정전 용량형 SP4T RF MEMS 스위치 구동용 4채널 승압 DC-DC 컨버터)

  • Jang, Yeon-Su;Kim, Hyeon-Cheol;Kim, Su-Hwan;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • This paper presents a step up four channel DC-DC converter using charge pump voltage doubler structure. Our goal is to design and implement DC-DC converter for capacitive SP4T RF MEMS switch in front end module in wireless transceiver system. Charge pump structure is small and consume low power 3.3V input voltage is boosted by DC-DC Converter to $11.3{\pm}0.1V$, $12.4{\pm}0.1V$, $14.1{\pm}0.2V$ output voltage With 10MHz switching frequency. By using voltage level shifter structure, output of DC-DC converter is selected by 3.3V four channel selection signals and transferred to capacitive MEMS devices. External passive devices are not used for driving DC-DC converter. The total chip area is $2.8{\times}2.1mm^2$ including pads and the power consumption is 7.52mW, 7.82mW, 8.61mW.

A Study on the Improved Parity Check Receiver for the Extended m-sequence Based Multi-code Spread Spectrum System with Code Set Partitioning and Constant Amplitude Precoding (코드집합 분할 방식의 확장 m-시퀀스 기반 정진폭 멀티코드 대역확산 통신 시스템을 위한 개선된 패리티 검사 기반 수신기에 관한 연구)

  • Han, Jun-Sang;Kim, Dong-Joo;Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.1-11
    • /
    • 2012
  • The multi-code spread spectrum communication system, which spreads data bit stream by multiplexing orthogonal codes, can transmit data in high rate. However it needs the high-cost good linear amplifier because of the multi-level output signal. In order to overcome this drawback several systems making the amplitude of output signal constant with Walsh codes have been proposed. Recently constant amplitude pre-coded multi-code spread spectrum systems using extended m-sequence have been proposed. In this paper we consider an extended m-sequence based constant amplitude multi-code spread spectrum system with code set partitioning. By grouping the orthogonal codes into 4 subsets, not only is the computational complexity of the transceiver reduced but BER performance also improves. It has been shown that parity checking on four detected codes at the receiver can correct code detection error and result in BER performance enhancement. In this paper we propose a improved parity check receiver. We carried out computer simulation to verify feasibility of the proposed algorithm.

I/Q channel 12-Bit 120MHz CMOS D/A Converter for WLAN (무선랜용 I/Q 채널 12bit 120MHz CMOS D/A 변환기 설계)

  • Ha, Sung-Min;Nam, Tae-Kyu;Seo, Sung-Uk;Shin, Sun-Hwa;Joo, Chan-Yang;Yoon, Kwang-S.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.83-89
    • /
    • 2006
  • This paper describes the design of I/Q channel 12bit Digital-to-Analog Converter(DAC) which shows the conversion rate of 120MHz and the power supply of 3.3V with 0.35um CMOS n-well 1-poly 4-metal process for advanced wireless transceiver. The proposed DAC utilizes 4-bit thermometer decoder with 3 stages for minimum glitch energy and linearity error. Also, using a optimized 4bit thermometer decoder for the decrement of the chip area. Integral nonlinearity(INL) of ${\pm}1.6LSB$ and differential nonlinearity(DNL) of ${\pm}1.3LSB$ have been measured. In single tone test, the ENOB of the proposed 12bit DAC is 10.5bit and SFDR of 73dB(@ Fs=120MHz, Fin=1MHz) is measured, respectively. Dual-tone test SFDR is 61 dB (@ Fs=100MHz, Fin=1.5MHz, 2MHz). Glitch energy of 31 pV.s is measured. The converter consumes a total of 105mW from 3.3-V power supply.

Calculation and measurement of optical coupling coefficient for bi-directional tancceiver module (양방향 송수신모듈 제작을 위한 광결합계수의 계산 및 측정)

  • Kim, J. D.;Choi, J. S.;Lee, S. H.;Cho, H. S.;Kim, J. S.;Kang, S. G.;Lee, H. T.;Hwang, N.;Joo, G. C.;Song, M. K.
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.500-506
    • /
    • 1999
  • We designed and fabricated a bidirectional optical transceiver module for low cost access network. An integrated chip forming a pin-PD on an 1.3 urn FP-LD was assembled by flip-chip bonding on a Si optical bench, a single mode fiber with an angled end facet was aligned passively with the integrated chip on V-groove of Si-optical bench. Gaussian beam theory was applied to evaluate the coupling coefficients as a function of some parameters such as alignment distance, angle of fiber end facet, vertical alignment error. The theory is also used to search the bottle-neck between transmittance and receiving coupling efficiency in the bi-directional optical system. Tn this paper, we confirmed that reduction of coupling efficiency by the vertical alignment error between laser beam and fiber core axis can be compensated by controlling the fiber facet angle. In the fabrication of sub-module, a'||'&'||' we made such that the fiber facet have a corn shape with an angled facet only core part, the reflection of transmitted laser beam from the fiber facet could be minimized below -35 dE in alignment distance of 2: 30 /J.m. In the same condition, transmitted output power of -12.1 dEm and responsivity of 0.2. AIW were obtained.

  • PDF

Modeling of the Cluster-based Multi-hop Sensor Networks (클거스터 기반 다중 홉 센서 네트워크의 모델링 기법)

  • Choi Jin-Chul;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.57-70
    • /
    • 2006
  • This paper descWireless Sensor Network consisting of a number of small sensors with transceiver and data processor is an effective means for gathering data in a variety of environments. The data collected by each sensor is transmitted to a processing center that use all reported data to estimate characteristics of the environment or detect an event. This process must be designed to conserve the limited energy resources of the sensor since neighboring sensors generally have the data of similar information. Therefore, clustering scheme which sends aggregated information to the processing center may save energy. Existing multi-hop cluster energy consumption modeling scheme can not estimate exact energy consumption of an individual sensor. In this paper, we propose a new cluster energy consumption model which modified existing problem. We can estimate more accurate total energy consumption according to the number of clusterheads by using Voronoi tessellation. Thus, we can realize an energy efficient cluster formation. Our modeling has an accuracy over $90\%$ when compared with simulation and has considerably superior than existing modeling scheme about $60\%.$ We also confirmed that energy consumption of the proposed modeling scheme is more accurate when the sensor density is increased.

Stacked Pad Area Away Package Modules for a Radio Frequency Transceiver Circuit (RF 송수신 회로의 적층형 PAA 패키지 모듈)

  • Jee, Yong;Nam, Sang-Woo;Hong, Seok-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.10
    • /
    • pp.687-698
    • /
    • 2001
  • This paper presents a three dimensional stacked pad area away (PAA) package configuration as an implementation method of radio frequency (RF) circuits. 224MHz RF circuits of intelligence traffic system(ITS) were constructed with the stacked PAA RF pakage configuration. In the process of manufacturing the stacked PAA RF pakage, RF circuits were partitioned to subareas following their function and operating frequency. Each area of circuits separated to each subunits. The operating characteristics of RF PAA package module and the electrical properties of each subunits were examined. The measurement of electrical parameters for solder balls which were interconnects for stacked PAA RF packages showed that the parasitic capacitance and inductance were 30fF and 120pH, respectively, which might be negligible in PAA RF packaging system. HP 4396B network/spectrum analyzer revealed that the amplification gain of a receiver and transmitter at 224 MHz was 22dB and 27dB, respectively. The gain was 3dB lower than designed values. The difference was probably generated from fabrication process of the circuits by employing commercial standard

  • PDF

Developing In-Band Full-Duplex Radio in FRS Band (동일대역 전이중 방식 FRS 대역 무전기 개발)

  • Kim, Jae-Hun;Kwak, Byung-Jae;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.769-778
    • /
    • 2017
  • In this paper, a self-interference signal cancellation(SIC) circult for In-band Full-Duplex has been developed and tested in RF/analog region. By use of this SIC circuit, a FM two-way radio has been developed working at FRS(Family Radio Service) band. The two-way radio device is transmitting the FM modulated signal and demodulating the wanted FM signal at the same time. A circulator is used to enable a single antenna to transmit and receive simuultaenously. The receiver circuit needs to cancel out the self-interference signal due to the transmit signal. A vector modulator(VM) is used to control the phase and magnitude of the esitmated signal. And in-phase and quadrature correlators are used to figure out the optimal coefficients of the VM to remove the self-interference signal according to the change of channel environment. In this work, SA58646 has been used as the FM transceiver, and the system is tested with a frequency of 465 MHz and a bandwidth of 12.5 kHz FM signal. The output power is 17.2 dBm at the antenna port, and the self intererence signal level is measured -49.2 dBm at the receiver end. Therefore the SIC level is measured by 66.4 dB.

Energy Efficient Clustering Algorithm for Surveillance and Reconnaissance Applications in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 감시·정찰 응용의 클러스터링 알고리즘 연구)

  • Kong, Joon-Ik;Lee, Jae-Ho;Kang, Jiheon;Eom, Doo-Seop
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1170-1181
    • /
    • 2012
  • Wireless Sensor Networks(WSNs) are used in diverse applications. In general, sensor nodes that are easily deployed on specific areas have many resource constrains such as battery power, memory sizes, MCUs, RFs and so on. Hence, first of all, the efficient energy consumption is strongly required in WSNs. In terms of event states, event-driven deliverly model (i.e. surveillance and reconnaissance applications) has several characteristics. On the basis of such a model, clustering algorithms can be mostly used to manage sensor nodes' energy efficiently owing to the advantages of data aggregations. Since a specific node collects packets from its child nodes in a network topology and aggregates them into one packet to relay them once, amount of transmitted packets to a sink node can be reduced. However, most clustering algorithms have been designed without considering can be reduced. However, most clustering algorithms have been designed without considering characteristics of event-driven deliverly model, which results in some problems. In this paper, we propose enhanced clustering algorithms regarding with both targets' movement and energy efficiency in order for applications of surveillance and reconnaissance. These algorithms form some clusters to contend locally between nodes, which have already detected certain targets, by using a method which called CHEW (Cluster Head Election Window). Therefore, our proposed algorithms enable to reduce not only the cost of cluster maintenance, but also energy consumption. In conclusion, we analyze traces of the clusters' movements according to targets' locations, evaluate the traces' results and we compare our algorithms with others through simulations. Finally, we verify our algorithms use power energy efficiently.

Design and Fabrication of Low Loss, High Power SP6T Switch Chips for Quad-Band Applications Using pHEMT Process (pHEMT 공정을 이용한 저손실, 고전력 4중 대역용 SP6T 스위치 칩의 설계 및 제작)

  • Kwon, Tae-Min;Park, Yong-Min;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.584-597
    • /
    • 2011
  • In this paper, low-loss and high-power RF SP6T switch chips are designed, fabricated and measured for GSM/EGSM/DCS/PCS applications using WIN Semiconductors 0.5 ${\mu}m$ pHEMT process. We utilized a combined configuration of series and series-shunt structures for optimized switch performance, and a common transistor structure on a receiver path for reducing chip area. The gate width and the number of stacked transistors are determined using ON/OFF input power level of the transceiver system. To improve the switch performance, feed-forward capacitors, shunt capacitors and parasitic FET inductance elimination due to resonance are actively used. The fabricated chip size is $1.2{\times}1.5\;mm^2$. S-parameter measurement shows an insertion loss of 0.5~1.2 dB and isolation of 28~36 dB. The fabricated SP6T switch chips can handle 4 W input power and suppress second and third harmonics by more than 75 dBc.