• Title/Summary/Keyword: trajectory-planning

Search Result 314, Processing Time 0.027 seconds

A Discrete-Time Trajectory Planning Method for robotic Manipulators (로보트 매니퓰레이터를 위한 이산시간 궤적 계획방법)

  • Lee, Bum-Hee
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.2
    • /
    • pp.152-161
    • /
    • 1988
  • In this paper, a direct method for obtaining the trajectory set points is investigated in discrete-time, which is different from the other conventional schemes. We consider the tracking of a straight line path, where the trajectory set points for manipulator control are determined exactly on the straight line path. For the purpose of the munimum-time operation of manipulators, the problem is formulated as a maximization of the Cartesian distance between two consecutive servo time instants. The maximization is subject to the smoothness and torque constraints. Several algorithms are developed and utilized to maximize the Cartesian distance. The proposed approach has been simulated on a VAX-11/780 computer to verify its performance.

  • PDF

A Study on optimal trajectory planning for a dual arm robot (양팔 로보트의 최적궤적 계획에 관한 연구)

  • Park, Man-Sik;Kim, Jong-Hyun;Kim, Jong-Sam;Lee, Suck-Gyu;Bae, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.395-398
    • /
    • 1993
  • This paper proposes an algorithm to find an optimal trajectory for unspecified paths of the tips of two arms of a dual arm robot. The effective handling a specified object of a dual arm robot closely depends on the effective collision avoidance between parts of robot and the object. For time optimal trajectory without collision, a graphical method is applied for a robot with two degree of freedom. The effectiveness of the proposed method is demonstrated by some simulation results.

  • PDF

Optimal motions for a robot manipulator amid obstacles by the concepts of penalty area (벌칙 면적 개념에 의한 로봇 팔의 장애물 중에서의 최적 운동)

  • Park, Jong-keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.147-155
    • /
    • 1997
  • Optimal trajectory for a robot manipulator minimizing actuator torques or energy consumptions ina fixed traveling time is obtained in the presence of obstacles. All joint displacements are represented in finite terms of Fourier cosine series and the coefficients of the series are obtained optimally by nonlinear programming. Thus, the geometric path need not be prespecified and the full dynamic model is employed. To avoid the obstacles, the concept of the penalty area is newly introduced and this penalty area is includ- ed in the performance index with an appropriate weighting coefficient. This optimal trajectory will be useful as a geometric path in the minimum-time trajectory planning problem.

  • PDF

A Study on Path Planning Algorithm of a Mobile Robot for Obstacle Avoidance using Optimal Design Method

  • Tran, Anh-Kim;Suh, Jin-Ho;Kim, Kwang-Ju;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.168-173
    • /
    • 2003
  • In this paper, we will present a deeper look on optimal design methods that are related to path-planning for a mobile robot. To control the motion of a mobile robot in a clustered environment, it's necessary to know a suitable trajectory assuming certain start and goal point. Up to now, there are many literatures that concern optimal path planning for an obstacle avoided mobile robot. Among those literatures, we have chosen 2 novel methods for our further analysis. The first approach [4] is based on HJB(Hamilton-Jacobi-Bellman) equation whose solution is the return-function that helps to generate a shortest path to the goal. The later [5] is called polynomial-path-planning approach, in this method, a shortest polynomial-shape path would become a solution if it was a collision-free path. The camera network plays the role as sensors to generate updated map which locates the static and dynamic objects in the space. Therefore, the exhibition of both path planning and dynamic obstacle avoidance by the updated map would be accomplished simultaneously. As we mentioned before, our research will include the motion control of a true mobile robot on those optimal planned paths which were generated by above algorithms. Base on the kinematic and dynamic simulation results, we can realize the affection of moving speed to the stable of motion on each generated path. Also, we can verify the time-optimal trajectory through velocity tuning. To simplify for our analysis, we assumed the obstacles are cylindrical circular objects with the same size.

  • PDF

Travel mode classification method based on travel track information

  • Kim, Hye-jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.133-142
    • /
    • 2021
  • Travel pattern recognition is widely used in many aspects such as user trajectory query, user behavior prediction, interest recommendation based on user location, user privacy protection and municipal transportation planning. Because the current recognition accuracy cannot meet the application requirements, the study of travel pattern recognition is the focus of trajectory data research. With the popularization of GPS navigation technology and intelligent mobile devices, a large amount of user mobile data information can be obtained from it, and many meaningful researches can be carried out based on this information. In the current travel pattern research method, the feature extraction of trajectory is limited to the basic attributes of trajectory (speed, angle, acceleration, etc.). In this paper, permutation entropy was used as an eigenvalue of trajectory to participate in the research of trajectory classification, and also used as an attribute to measure the complexity of time series. Velocity permutation entropy and angle permutation entropy were used as characteristics of trajectory to participate in the classification of travel patterns, and the accuracy of attribute classification based on permutation entropy used in this paper reached 81.47%.

A Joint Motion Planning Based on a Bio-Mimetic Approach for Human-like Finger Motion

  • Kim Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Grasping and manipulation by hands can be considered as one of inevitable functions to achieve the performances desired in humanoid operations. When a humanoid robot manipulates an object by his hands, each finger should be well-controlled to accomplish a precise manipulation of the object grasped. So, the trajectory of each joint required for a precise finger motion is fundamentally necessary to be planned stably. In this sense, this paper proposes an effective joint motion planning method for humanoid fingers. The proposed method newly employs a bio-mimetic concept for joint motion planning. A suitable model that describes an interphalangeal coordination in a human finger is suggested and incorporated into the proposed joint motion planning method. The feature of the proposed method is illustrated by simulation results. As a result, the proposed method is useful for a facilitative finger motion. It can be applied to improve the control performance of humanoid fingers or prosthetic fingers.

Development of Optimal Path Planning for Automated Excavator (자동화 굴삭기 최적경로 생성 알고리즘 개발)

  • Shin, Jin-Ok;Park, Hyong-Ju;Lee, Sang-Hak;Hong, Dae-Hee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.78-83
    • /
    • 2007
  • The paper focuses on the establishment of optimized bucket path planning and trajectory control designated for force-reflecting backhoe reacting to excavation environment, such as potential obstacles and ground characteristics. The developed path planning method can be used for precise bucket control, and more importantly for obstacle avoidance which is directly related to safety issues. The platform of this research was based on conventional papers regarding the kinematic model of excavator. Jacobian matrix was constructed to find optimal joint angles and rotation angles of bucket from position and orientation data of excavator. By applying Newton-Raphson method optimal joint angles and bucket orientation were derived simultaneously in the way of minimizing positional errors of excavator. The model presented in this paper was intended to function as a cornerstone to build complete and advanced path planning of excavator by implementing soil mechanics and further study of excavator dynamics together.

  • PDF

Motion Planning of Autonomous Mobile Robot using Dynamic Programming (동적프로그래밍을 이용한 자율이동로봇의 동작계획)

  • Yoon, Hee-sang;Park, Tae-Hyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • We propose a motion planning method for autonomous mobile robots. In order to minimize traveling time, a smooth path and a time optimal velocity profile should be generated under kinematic and dynamic constraints. In this paper, we develop an effective and practical method to generate a good solution with lower computation time. The initial path is obtained from voronoi diagram by Dijkstra's algorithm. Then the path is improved by changing the graph and path simultaneously. We apply the dynamic programming algorithm into the stage of improvement. Simulation results are presented to verify the performance of the proposed method.

An Interphalangeal Coordination-based Joint Motion Planning for Humanoid Fingers: Experimental Verification

  • Kim, Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.234-242
    • /
    • 2008
  • The purpose of this paper is to verify the practical effectiveness of an interphalangeal coordination-based joint motion planning method for humanoid finger operations. For the purpose, several experiments have been performed and comparative experimental results are shown. Through the experimental works, it is confirmed that according to the employed joint motion planning method, the joint configurations for a finger's trajectory can be planned stably or not, and consequently the actual joint torque command for controlling the finger can be made moderately or not. Finally, this paper analyzes that the interphalangeal coordination-based joint motion planning method is practically useful for implementing a stable finger manipulation. It is remarkably noted that the torque pattern by the method is well-balanced. Therefore, it is expected that the control performance of humanoid or prosthetic fingers can be enhanced by the method.

Minimum-Time Algorithm for Intercepting an Object by the Robot on Conveyor System (컨베이어 상의 물체 획득을 위한 로봇의 최소시간 알고리즘)

  • Shin, Ik-Sang;Moon, Seung-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.795-801
    • /
    • 2005
  • This paper focuses on planning strategies for object interception by the robotic manipulator on a conveyor system in minimum time. The goal is that the robot is able to intercept object with minimum time on a conveyor line that moves at a given speed. The search algorithm for minimum time solution is given in detail for all possible cases for initial locations of robot. Simulations results show the validity of the given algorithm.