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A Discrete-Time Trajectory Planning Method for

Robotic Manipulators
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Abstract

In this paper, a direct method for obtaining the trajectory set points is investigated in

discrete-time, which is different from the other conventional schemes.

We consider the

tracking of a straight line path, where the trajectory set points for manipulator control are
determined exactly on the straight line path. For the purpose of the minimum-time oper-
ation of manipulators, the problem is formulated as a maximization of the Cartesian distance
between two consecutive servo time instants. The maximization is subject to the smooth-
ness and torque constraints. Several algorithms are developed and utilized to maximize the
Cartesian distance. The proposed approach has been simulated on a VAX-11/780 computer to

verify its performance.

I. Introduction

This paper presents a discrete time trajec-
tory planning scheme to determine the trajec-
tory set points on a given straight line path.
In the previous efforts of trajectory planning
[1-4, 6-8, 10, 11], the manipulator hand may
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not be on the desired path, but on the joint-
interpolated polynomials. This scheme deter-
mines the trajectory set points that are exactly
on the given straight line path.

The trajectory planning problem is for-
mulated as a maximization of the Cartesian
distance between two servo time instants on
a given straight line path subject to the
smoothness and torque constraints. Using a
real time servo interval, the manipulator
dynamics is taken into account in the plann-
ing process. Due to the discrete time approxi-
mations of joint velocity, acceleration, and
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jerk, the optimization solution involves
intensive and erroneous computations which
prevent it from useful applications. Thus,
the optimization is realized by search
algorithms. The proposed trajectory planning
scheme is simulated on a VAX-11/780
computer to verify the performance.

II. Various Constraints

1. Notations

Three Euler angles, yaw (a(t)), pitch
(B(t)), and roli(y(t))are used to represent the
orientation of the hand. The position (P (t)),
Euler angles ( & (t) ), linear velocity (v (1) ),
and angular velocity (£2 (t)) vectors of the
manipulator hand with respect to a reference
frame are defined as

pE (b py,p) " 1@ TN (la)
v e (vx, Ve vZ)t ;) g (wx,wy, wz) t
(1b)

To initiate the discretized trajectory analysis,
let us denote the sampling period for the servo
control of the robot as T (usually 1 ms < T
< 28 ms) and gq(k) to represent angular
displacement ¢ (kT):

Q kT) =g (k) ;k=0,1,.. @)
Then we approximate the velocity, the acceler-
ation, and the jerk, respectively, at time kT by:

q (KT) %# (@ (k) -G (k-1)) = § (k) (3)
§ (kT) E-;—z (§ (k) - 24 (k-1) +d (k-2))
=q (k) 4)
w (kT) 5%-3 (d (¥) -3q (k-1) + 3§ (k-2)

G k-3) =W (k) (5)

where w (kT) denotes the jerk at time t=
kT. For simplicity, we shall drop the “bar”
from the rest of the equations.

2. Straight Line Constraint

In the planning of straight line trajectory,
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the initial location [ P (ko), Q (ko) ] and the
fianl location [ P (kf), Q (kf) 1 are given for
the manipulator. The straight line equation

that passes through these two points is
described by
p)=pky)+A(K) (p(kpP (k) (6)
® (k)= @ (k) + A () (D (kp-® (k) (7)

where 0 < X (k) <1, and k, and k¢ are the
initial and final times, respectively. The time kf
is not fixed, but will be determined from the
overall trajectory planning algorithm. The
position P(k)and the Euler angles ®(k)can be
augmented into a 6x1 vector and described by

|

where N (.) is a 6x1 nonlinear vector function
depending on the configuration of a 6 degrees
of freedom manipulator.

p (k)
d (k)

=N(q (k) =(N; (g k), ...,
Ne (q (k)¢

(8)

3. Smoothness Constraint

All discretized control set points in the
joint-variable space must be within certain
limits to guarantee the smoothness of the
trajectory. The smoothness constraint is
stipulated in three different bounds, namely,
velocity bound (VB), acceleration bound
(AB), and jerk bound (JB). They are given
respectively as:

lqi(k) l <e¥ ;€ >0,i=1,..,6 (9)
1 1

q; (k) ’ <e? ;e >0,i=1,..,6 (10)
1 1

'Wi(k)l <6f]; <~:_J >0,i=1,..,6 (11)
1 1

where e;’, e, and ei' are the it element of 6-

dimensional bound vectors for the manipulator.
The velocity bound (VB) and acceleration
bound (AB) constrain the joint actuators from
exceeding the maximum limits of the velocity
and acceleration. The jerk bound (JB) reduces
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wear of joint actuators, reduces excitation of
vibrations, and constrains the smoothness.
Hence, we impose VB, AB, and JB on the
entire trajectory set points. Combining (9)-
(11), we can obtain the joint position con-
straint at time t = kT:

43, min (k) <qi k) <qi,max k);i=1

where 9 min (k) and 9 max (k) depend on the
position, veloc1ty, and acceleration at t = kT
together with ei, ei, and eiJ.

4. Torque Constraint

In general, the dynamical behavior of a six-
joint manipulator can be described by the
Lagrange-Euler equations of motion as [9]

r(t)=D(q)q(t)+h(q,q)+c(q) (13)
where 1 (t) is an applied torque vector for joint
actuators, ¢ (q) is a gravitational force vector,
h (4,q) isthe Coriolis and centrifugal force
vector, and D(q) is an acceleration-related
matrix. If q (k), q (k) and g (k) are given,
and treating the equations of motion as an
inverse dynamics of the system, the required
piecewise joint torques can be computed
recursively using the Newton-Euler equations
of motion as [5]

Tk)=[D(qk))]ak)+h(ak), @14
qak))+c(qk))

In a simplified notation, we have
7(k)=[Dy] 4 (k) +hy +¢ (15)

where D = D (q (k) ), by = h (q (k), q (k) )
and ¢ =¢ (q (k) ). Let us assume that the
toreques generated from (15) are constrained
by limits that are dependent on the joint pos-
ition and velocity as,

Timin O ST 7y oK) 5i= 1,0, 6
(16)
Thus, (16) can be written as,
r1a 00 <Dy § () <7, () (17)
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where D, ik represents the i*" row of the matrix

Dk, and 7' (k) and T1+a (k) are written,
respectlvely, as ’
- _ (18a)
Tia 0 =7 min GO -hyp -5y
+ =
T (K)= Ti,max(k) - hi,k - (18b)

where h; ik and c; ik are the it elements of the
vectors hk and Sy respectively. Therefore, the
joint values at each servo time instant must
satisfy the straight line constraint given by
(6) - (7), the smoothness constraint given by
(12), and the torque constraint given by (17).

II. Speed Optimization

It is desirable to obtain the minimum time
trajectory of the straight line path. Due to the
discrete time formulation and approximations
of joint velocity and acceleration, the optimiz-
ation is formulated to maximize the Cartesian
distance between two servo time instants, that
is, to maximize

lp (k) - p (k-1) | (19)
subject to the smoothness constraint, torque

constraint, and the straight line constraint.
Utilizing (8),

P (k)
® (k)

= [VN@(k))]. Aqk) (20)

where & P (k) = p (k) - p (k-1), 28 (k) - P (k-1),

Aq(k) =q (k) - q (k-1), and the elements of

[AN (q (k) )] are found to be

oN N; (q (k))
an ()

,6
2D

Utilizing (6) - (7) at time t= (k-1)T and t =
kT, their difference yields,

[VN(Q(k))]ij= i, =1, .

AP (k
w1 AX (k)

Ad (k)

P(kp-P(k
)Pk ]

® (kp) - B (k)
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where & A (k) = A (k) - A (k-1). Combining (20)
and (22), we have:

[VN@&))]-Aq(k)= AN(K) (23)

p (kg -p(ky)
® (ko) - D (k)

If [VN(q (k)) ] is non-singular at time t =kT,
then

Aq (k) = AN (k) Q (k) (24)

where
P (kf) -P (ko)

Q)= (VN (q (k) 1!
()] (kf) -® (ko)

(Q (K),...,Qs (k) 1" (25)
physically, Q (k) is a vector which relates the
angular displacement of each joint with &\ (k)
of a given straight line. It is notable that

q (k) =q(k-1)+ AN (k) Q (k) (26)
Combining (12) and (26), with the codnition
Q; (k) >0, we have:

A () <AA (k) <AX, (k);i=1,...,6
27
where

At 0 = imax (28)

i Q;(k)

T'qi,min (k)

AN (k)= (29)

Q,(k)

Another constraint on A X (k) is determined
from the torque constraint. Combining (17)
and (26), with the codition Q; (k) >0, we
have:

N ,min K< AR < 1 max (&) 3

i=1,...,6 (30)
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In fact, 1 min (k) and A?\l max (k) are the
minimum and maximum constraints on & A (k)
from the 1 th joint torque constraint, respec-
tively. Since & A (k) results in the local speed
at t kT, it is desirable to formulate the
problem as:

maximize 2 A (k) ; k=1,2,...

subject to

K= AN (¥) =2\

1 min 1,max ( )

and

AW EME < AN ) ;i=1,..,6
The constraint on &\ (k) may not be con-
sistent. Thus, the existence of the maximum of
AX (k) is not always guaranteed. This aspect
will be discussed later. Since A)\; %), A)\'i+ k),
1m1n (k) and A?\l max (k) are obtained and
derived by approx1mat10ns it is very difficult
to obtain them exactly. The most significant
errors are due to the derivative of the trigono-
metric function involving tan ~! [tan Ty .
We now describe search algorithms for avoiding
this difficulty.

IV. Search Algorithm

At the initial location of straight line path,
P (ko), ¢ (ko), v (ko), Q (ko) are specified and
satisfy all the physical constraints. We would
like to find the control set points P (k), ® (k)
for k = 1, ... such that the robot hand will
traverse the straight line. Passing the [P (ko),
(6] (k )] values into the inverse kinematics
routme the corresponding joint angles, q (k )
= N1 (p (k ), @ (k )) are obtained. We
assume, w1thout loss _of generality, that v (ko)
=0 (ko) = v (ko) =Q (ko) = 0 which lead to
q (ko) =q (ko) = 0. We further assume that
w (k o) =0,

1. Initial Estimated Length Ratio

X (1) can be estimated by evaluating the
directional information of the given straight
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line. From (12), q; (1) is bounded by 9 min of A (k). The choice of the value of A (1) as

(1) and q; _max (1). Depending on the stralght
line equatlon the linear velocity components
of the robot hand must be constrained.
Consider

Vet =T @4 Gh

Let us denote the ijth element of the Jacobian
matrix in (31) as Ji" Since the robot motion is
expected to be very slow at the first servo time
instant, we assume that J (1) = J . If

x (1) >0 from the g1ven straight lme then
q (1) can be selected positively whenever

J1j (1) > 0, otherwise it can be selected
negatively. That is, if v, (1) >0, then
. if J,. =
i) <[ Gmax W[OS0 (2
] ;j=1,...,6
4, min (1 if J; <0
Similarly, if v, (1) <0 then
i () 9§, max () if Jlj (0 <o
) 5 i=1,..,6
%) min(D) i I35 () >0 (33)

From the chosen values of q; (1), we can obtain
Py (1) from the kinematic equations. Let us
use a notation )\x (1) to represent the
estimated value of A (}) from the x directional
requirement. Then, )‘x (1) is determined as:

P, (1)-P, (k)

A (D)=

PX (kf) — Px (kO) (34)

where if P (kfl =Py (ko), then there is no
constraint on )\x(l). Similarly, additional
constraints can be obtained along the y,z

axes. Also, the given Euler angle information
gives three more constraints on the A(1). Then

we can choose 5\ (1) as:

A =min { A (D,A, (1,2, (D),

Mg (1,25 (1), A (D)}

(35)

Recall that AX (1) = A (1) by the definition
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in (35) means that the robot motion at t=T
is constrained critically by the corresponding
position or Euler angle information. For the
smoothness constraint, the best initial estimate
of q; (k) for k = 2,3,..., which corresponds to
A)\l (k), is chosen to be the mid-point of the
allowable position bounds as,

1,...,6

; () = (A i )+ @ oy (D) 5=

(36)

Using E;i (k) and q; (k-1), the initial estimate of
joint velocity is found to be

. 1
900 =-(4; (9 -9, (1)) 3= 1., 6(37)

v (k),

The initial estimate of linear velocity,
can be obtained by using (31) as,

vk =7, (k) q(k) (38)
where Ju (g (k)) is the upper 3x6 submatrix
of the Jacobian matriAx in (31). To obtain the
estimated value of AA! (k) for k = 2,3,..., let
v, (k) be the projection of v (k) onto the given
straight line. Then,
where Qtotal is the total length of the straight
line path. Thus,

(P (kp) - P (k) ¥ (k)

” P (kf) -pP (kO) ” * Qtotal

A(k)=T-

(40)

The estimate A (k) will be used in the
following search algorithm to obtain the
maximum value of AX (k).

2. Forward Search Algorithm

After finding the initial estimate AX! (k),
the objective is to find the largest value of
AM (k) on the straight line subject to the
smoothness and torque constraints. This is
solved by an iterative forward binary search
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algorithm which is used to determine all the
control set points for the acceleration portion
of the given straight line. The algorithm FW is
outlined below.

Algorithm FW

FW1 [Initialize and loop] For each k =
1,2, . . ., perform steps FW2 to FW8.

FW2 [Compute the desired set of constraint
limits] (1) Smoothness constraint as in
(12) + qj pin (K) and g,y (), (2)
Torque constraint as in an: T (k)
and T+ (k)

FW3 [Initial estimate] Find AN! (k) ((35)
and (40)) and set m=0. Also, set
ANOY (k) = py- AN (k) and AxDish
k) = py- AM! (k), where py and p, are
user designated variables (when k=m=1,

axlow (1y=0).

FW4 [Check the global stopping criterion
for A (k) 1 Update the value of m
and find A™ (k) = X (k-1) + 2A™ (k).
If A™ (k) <18, (where 6; >0 is a
user designated variable) then go to
step FW5, otherwise stop. (Trajectory
planning has been completed.)

FW5 [Find Cartesian solution.] Compute
P (k) and @ (k).

FWe6 [Find the inverse kinematics solution]
Find

q () =N (P (K), ® (k)

Fw7 [Qheck estimate’s constraints and adjust
AaA™ (k)] If q (k) and 4 (k) satisfy the
bounds in FW2,

then set AMOY (k) = AA™ (k) and

RETI ANOW (i) + ANRigh k),

2
and go to step FW4,

FW8 [Check stopping criterion for AN k)1

If | AN (k) - AN (k) | <8, an (o)

(where §, >0 is a user designated variable)
then A\ (k) = AA™ (k) ; k = k+1 ; and go
to step FW2, otherwise go to step FW4,

3. Determination of Break Point

The forward search algorithm FW generates
the trajectory set points which constitute the
acceleration portion of the straight line. Thus,
a point must be determined on the straight
line so that the deceleration portion starts from
the point to meet the boundary conditions at
the final location. A break point is defined as
a point on the given straight line at which the
acceleration portion of the straight line ends
and the deceleration portion of the straight line
starts . This break point can be determined
from the following procedure BR.

Procedure BR

BR1 [Determine a possible break point]
Determine a set point P (s) such that

1P () -y () I+ k.

IP (s+1)-P(s) Py()-Py (r-1) ||
T ) T

is minimum over s and r, where the
subscript b denotes the search points
obtainable by applying the algorithm
FW from the final point to the initial
point. The number kd is a weighting
factor that measures the slope error
between the forward and backward
motions. Also, set the loop counter
¢=0.

BR2 [Apply the MFW algorithm from the
set point found in BR1.] Update the
loop counter ¢. Treating the point P (s)
as an initial position, apply the modified
forward search algorithm for the deceler-
ation motion and check whether the
algorithm MFW is stopped by the
global stopping criterion 6.

BR3 [Adjust the location of the break
point.] If the search algorithm MFW
is stopped by the global stopping
variable &,
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then decrease s by 1 and go to step
BR?2, otherwise go to step BR4.

BR4 [Determine the best break point.]
If the loop counter ¢ 222, then P (s+1)
is the best break point, and compute
the final joint position, velocity, and
acceleration. otherwise reset the loop
counter ¢ to 0, increase s by 1, and go
to step BR2.

The modified forward binary search algor-
ithm is identical to the algorithm FW except
the step FW7. The step FW7 is modified in the
algorithm MFW as follows:

Algorithm MFW

MFW7 [Check _estimate’s constraints and
adjust AA™ (k)], If the joint inverse
kinematics solution satisfies the

bounds computed in step MFW2,
then set ANUER (k) = AA™ (k) and

ANOW (1) + axhigh (.

Sm+1

and go to step MFW8,

otherwise set A)\low k)= A}\m (k) and
AN (k) + anhiEh (),

ym+1

2
and go to se step MFW4,

In allgorithm MFW, the §, and §, must be
chosen such that the former generates the
inverse kinematics soultion which does not
satisfy the constraint limits in step MFW2,
while the latter generates the inverse kinem-
atics solution which satisfies the constraint
limits in step MFW2,

4. Existence of Straight Line Trajectory

For a given straight line path, there is no
general rule to guarantee the existence of the
straight line trajectory with an acceleration
portion followed by a deceleration portion.
The straight line trajectory between two spe-
cified end points may not exist if the average
speed of the robot is beyond a certain limit

2R ETBERYGE $ 25 % # 2 8%

[3]. The failure of the algorithm FW or BR
can happen for the following cases : (1) when
the initial estimate AA} (k) generates the
inverse Kkinematics solution which does not
satisfy the smoothness and torque constraints;
(2) when the algorithm FW or BR is not
terminated by the global stopping variable
8;. Since either case will generate a large
number in the loop counter m, the failure of
the algorithm can be detected if the loop coun-
ter exceeds a prespecified number of the
bisection process. Then a different planning
must be used for the given straight line path.
Here a procedure (Procedure ESLT) is proposed
to check the existence of straight line trajec-
tory and to obtain a different trajectory plann-
ing for a given straight line.

Procedure ESLT

ESLTI1 [Check whether the algorithm FW is
completed or not.] Identify the
failure of the algorithm FW. When
the loop counter m exceeds a spec-
ified number, apply this procedure to
a given straight line path. If search
points from the algorithm FW are
completed and stopped by &,
then go to step ESLT2,

Otherwise go to step ESLT3.

ESLT2 [Find a break point and apply the
algorithm MFW.] Apply the pro-
cedure BR and the algorithm MFW,
and stop. Straight line trajectory
planning is completed.

ESLT3 [Apply the algorithm MFW from the
final search point.] Apply the algo-
rithm MFW from the final search
point of the algorithm FW to the
desired final point. If the algorithm
MFW is completed and stopped by
81’ then apply the procedure BR
(from step BR2 to BR4). Straight
line trajectory planning is completed.
Otherwise go to step ESLT4.

ESLT4 [From the final search point of the
algorithm MFW, start to apply the
FW algorithm.] Take the final

search point from the algorithm
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MFW as the initial point and go to
step E§LT1. Take the initial estim-
ated AN (k) of the final search point
as the initial estimated A (k) of the
forthcoming algorithm FW in step
ESLT1.

The procedure ESLT generates trajectory set
points with a combination of several acceler-
ation and deceleration portions for a given
straight line path, The resultant trajectory may
require a longer traveling time than that of the
trajectory with one break point for a given
straight line path.

V. Computer Simulation

A C-language program is written on a VAX-
11/780 computer to implement and evaluate
the performance of the proposed trajectory
planning schem for a PUMA 560 series robot
arm. The trajectory planner reads in the given
initial and final locations of a straight line path
with the stopping constants 6, and 8, and
outputs the control set points of joint posi-
tion, velocity and acceleration along the given
straight line path. The servo control period
in this simulation is assumed to be 10ms.
Numerical values in Table 1 are used in the
simulation. The torque constraints which
depend on the instantaneous joint position and
velocity are not available from the manufactur-
er's specification sheet for the PUMA robot.
Thus, a set of constant torque constraints
has been implemented in the simulation.
The torque constraints used for joint 1, joint
2, .., joint 6 are 232nm, 375Nm, 188Nm,
94Nm, and 94Nm. Also, we implemented the
smoothness constraint in Table 2. The choice
of §; and &, is closely related to the existence
of straight line trajectory for a given path. The
5, and §, are selected to be 1 and 2, res-
pectively, in the algorithm FW, and 0 and 1,
respectively, in the algorithm MFW. If the
trajectory planner started the deceleration
portion from the 84th point of the trajectory
set points, it produced the smallest position
and Euler angle errors at the final search point
among the all possible break points. Hence,
the g4th point from the procedure BR is the
best break point for this trajectory planning.
The resultant Cartesian position error due to

(159)
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Table1. Data used in computer simulation.
Initial Cartesian Point (m) (- 0. 1400 00, 0. 560000, 0. 390000}
Initial Orientation (deg) (0. 00000, 90. 00000, 90. 00000}
[nitial Joint Vel. & Ace. - . .
(deg/sec and deg/sec’) LR
Final Cartesian Point(m) (0. 000000, 0. 440000, 0. 480000)
Final Orientation(deg. ) {30. 00000, 60. 00000, 60. 00000)
Final Joint Vel & Acc. Q=G =0i=1,2 ~n
{deg/sec and deg/sec?)
Sampling Period 10msec
Stopping Variables 8, 0.000001, 4, =0.0001
Number of Forward Search s
Points 121
Number of Backward Search
Points 121
Possible Break Point at the 85th sampling point
Actual Break Point at the 84th sampling point
Table 2. Physical constraints for computer
simulation.
Joint 1| Joint 2 | Joint3 | Joint 4 | Joint5 | Joint 6
¢ (deg/ sec’) 700 | 500 § 2100 | 4000 | 2100 j 8100
¢! (deg/sec’) 45 40 75 0 % 80
¢! (deg/sec) 100 95 100 156 | 130 110

discrete time approximation is found to be
less than Imm while the maximum Euler
angle error is found to be less than 0.1 degree.
Figures 1-3 show the trajectory curves for joint
1,3,and 5.

IV. Conclusion

This paper presents a discrete time trajectory
planning scheme to determine the trajectory
set points on a given straight line path which
satisfy both the smoothness and torque con-
straints. A real time servo interval was used
for planning the -manipulator trajectory. An
interative and backward search
algorithm was developed to determine the
control set points from the initial position to
a break point on the straight line. Then a
modified forward search algorithm was

forward
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