Ye, Bo-Young;Lee, GyuWon;Kwon, Soohyun;Lee, Ho-Woo;Ha, Jong-Chul;Kim, Yeon-Hee
Atmosphere
/
v.25
no.1
/
pp.19-30
/
2015
The Ka-band cloud radar (KCR) has been operated by the National Institute of Meteorological Research (NIMR) of Korea Meteorological Administration (KMA) at Boseong National Center for Intensive Observation of severe weather since 2013. Evaluation of data quality is an essential process to further analyze cloud information. In this study, we estimate the measurement error and the sampling uncertainty to evaluate data quality. By using vertically pointing data, the statistical uncertainty is obtained by calculating the standard deviation of each radar parameter. The statistical uncertainties decrease as functions of sampling number. The statistical uncertainties of horizontal and vertical reflectivities are identical (0.28 dB). On the other hand, the statistical uncertainties of Doppler velocity (spectrum width) are 2.2 times (1.6 times) larger at the vertical channel. The reflectivity calibration of KCR is also performed using X-band vertically pointing radar (VertiX) and 2-dimensional video disdrometer (2DVD). Since the monitoring of calibration values is useful to evaluate radar condition, the variation of calibration is monitored for five rain events. The average of calibration bias is 10.77 dBZ and standard deviation is 3.69 dB. Finally, the statistical characteristics of cloud properties have been investigated during two months in autumn using calibrated reflectivity. The percentage of clouds is about 26% and 16% on September to October. However, further analyses are required to derive general characteristics of autumn cloud in Korea.
The purpose of this study was to seek out the structural relation among Relationship Benefits, Customer Satisfactions, and Customer Preference of members to Personal Training. For the subject of this study, we selected 227 persons among men of more than 20 years old age who used Personal Training Center more than 1 month through the Convenient Sampling Method. For the analysis, we used SPSS 15.0 Statistics Package and AMOS 7.0 program as a research tool and have carried out Frequency Analysis, Confirmatory Factor Analysis, Reliability Analysis, and Structural Equation Model Analysis. The results were as follows: First, the Customization Benefits among Relational Benefits have a positive effect on the Customer Satisfaction. Second, the Psychological Benefits and Social Benefits among Relational Benefits have a positive effect on the Customer Preference. Third, the Customer Satisfaction has a positive effect on the Customer Preference.
Journal of the Korea Academia-Industrial cooperation Society
/
v.10
no.10
/
pp.2837-2845
/
2009
This study certified that the mentality training that utilized ICT learning has been working as an important base having much effect on learner's basic attitude on physical education class, improvement of bodily exercise function, and class satisfaction, and that the exercise ability was improved in the scope of speed, form(posture), accuracy(shooting success rate), and adaptability(performance ability). It means it is a much more step-forwarded educational method that the advantages of ICT learning and mentality training at the existing learning method were applied to the reality. Regarding the object of this study, it is a little bit unreasonable to generalize its study results in that it wasn't intended for national unit sampling. Therefore, in the future study, it is necessary to continue to advance the study that its representative-ness was supplemented through the balanced sampling between area and area, and between grade and grade.
Recently, image-based object detection has made great progress with the introduction of Convolutional Neural Network (CNN). Many trials such as Region-based CNN, Fast R-CNN, and Faster R-CNN, have been proposed for achieving better performance in object detection. YOLO has showed the best performance under consideration of both accuracy and computational complexity. However, these data-driven detection methods including YOLO have the fundamental problem is that they can not guarantee the good performance without a large number of training database. In this paper, we propose a data sampling method using CycleGAN to solve this problem, which can convert styles while retaining the characteristics of a given input image. We will generate the insufficient data samples for training more robust object detection without efforts of collecting more database. We make extensive experimental results using the day-time and night-time road images and we validate the proposed method can improve the object detection accuracy of the night-time without training night-time object databases, because we converts the day-time training images into the synthesized night-time images and we train the detection model with the real day-time images and the synthesized night-time images.
KUSUMANINGRUM, G.;HARYONO, Siswoyo;HANDARI, Rr. Sri
The Journal of Asian Finance, Economics and Business
/
v.7
no.12
/
pp.995-1004
/
2020
This study aims to analyze the effect of transformational leadership (TL), procedural justice (PJ), and training (T) on employee performance (EP) mediated by self-efficacy (SE). The object of this research is Rumah Sakit Umum Daerah (RSUD) M.Th. Djaman, a hospital in Sanggau Regency, while the subjects are the institution's staff. Data collection search uses purposive sampling with a total of 120 samples. Data are obtained through questionnaires distributed directly to respondents using the Google Form application. Data analysis techniques used in this study include standard error of mean (SEM) with AMOS software version 24.00. Methods use to test validity and reliability of data include Confirmatory Factor Analysis (CFA), Construct Reliability (CR) and VE. The results of the analysis show that only training has a significant effect on self-efficacy, and self-efficacy has a significant effect on employee performance. Also, self-efficacy is proven to mediate the role of training on employee performance; the other hypotheses are not significant. Training is the most prominent positive factor affecting self-efficacy and self-efficacy has a significant effect on employee performance at RSUD M.Th. Djaman. The results of this study can be used as a reference by management in determining what policy priorities should take precedence.
The purpose of the present study is to investigate the lipid peroxidation, creatine kinase activity and cortisol hormone levels following the training intensity in elite judo players. Six elite Judo players participated in the experiments (3h repetition judo program), which include stretching, judo skill practice and cool down without recess. Blood sampling were taken at the judo gymnasium at the time of resting, 1h training, 2h training, 3h training, 2h recovery, and 24h recovery time and this were analyzed for CK, MDA and Cortisol levels. The results obtained were analyzed via repeated measures of ANOVA using SPSS package program (ver.10.0) and a value of p<.05 was considered statistically significant. The results from this study were as follows. In the CK levels, which reflect the contribution of creatine phosphate and muscle damage degree, there was a significant difference (p<.05) after judo training in every period. Recovery 24h showed the highest level. In the MDA levels, which reflect lipid peroxidation, there was a significant difference (p<.05) after judo training. Recovery 2h showed the lowest level. In the cortisol hormone levels, which reflect stress status, there was a significant difference (p<.05). In this study, we can conclude that For the trained athletes, MDA level was lower at the time of exercise compare to the other period, this is caused by the increased antioxidant defence mechanism.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.11
/
pp.4028-4042
/
2021
Aiming at the problem of software defect prediction difficulty caused by insufficient software defect marker samples and unbalanced classification, a semi-supervised software defect prediction model based on a tri-training algorithm was proposed by combining feature normalization, over-sampling technology, and a Tri-training algorithm. First, the feature normalization method is used to smooth the feature data to eliminate the influence of too large or too small feature values on the model's classification performance. Secondly, the oversampling method is used to expand and sample the data, which solves the unbalanced classification of labelled samples. Finally, the Tri-training algorithm performs machine learning on the training samples and establishes a defect prediction model. The novelty of this model is that it can effectively combine feature normalization, oversampling techniques, and the Tri-training algorithm to solve both the under-labelled sample and class imbalance problems. Simulation experiments using the NASA software defect prediction dataset show that the proposed method outperforms four existing supervised and semi-supervised learning in terms of Precision, Recall, and F-Measure values.
The Journal of Asian Finance, Economics and Business
/
v.9
no.2
/
pp.255-260
/
2022
SME sector's success also depends on its employees' job satisfaction as satisfied employees are likely to be more productive at the workplace and positively enhance SME business performance. Small and medium firms are the heart of the economy, and employees are the main and valuable asset for the SME firms. If SME business managers can increase employee satisfaction, then SMEs' performance will also increase in the future. Hence, the current study aims to determine the job satisfaction of SME employees by analyzing the impact of job training (JT) and promotion (PRO) opportunities on employee job satisfaction. Purposive sampling is applied in the study, and 202 SME employees have participated as sample respondents. The final sample size is n = 202. SPSS 26.0 version is used to analyze the hypotheses. The study findings show that both job training (JT) and promotion (PRO) have a positive effect on SME employee job satisfaction. It does indicate that SME managers need to provide necessary training programs and timely promotion to their current working employees to keep them satisfied with their job. Promotion and effective job training will certainly enhance employees' job satisfaction. The study has also offered a few strategic implications for SME business managers.
Journal of the Korean Institute of Intelligent Systems
/
v.21
no.2
/
pp.171-177
/
2011
Accuracy and computing time are considerable issues in machine learning. In general, the computing time for data analysis is increased in proportion to the size of given data. So, we need a sampling approach to reduce the size of training data. But, the accuracy of constructed model is decreased by going down the data size simultaneously. To solve this problem, we propose a new statistical sampling method having similar performance to the total data. We suggest a rule to select optimal sampling techniques according to given data structure. This paper shows a sampling method for reducing computing time with keeping the most of accuracy using cluster sampling, stratified sampling, and systematic sampling. We verify improved performance of proposed method by accuracy and computing time between sample data and total data using objective machine learning data sets.
Park, Joowon;Cho, Seungwan;Kim, Dong-geun;Jung, Geonhwi;Kim, Bomi;Woo, Heesung
Journal of Korean Society of Forest Science
/
v.109
no.3
/
pp.291-299
/
2020
The purpose of this study was to propose the most cost-effective sampling method, by analyzing the cost of forest resource investigation per sampling method for the planned harvesting area of in Chunyang-myeon, Byeonghwa-gun, Gyeongsangbuk-do, Korea. For this study, three sampling methods were selected: random sampling method, systematic sampling method, and line transect method. For each method, sample size, hourly wage, number of sample points, survey time, travel time, the sample error rate of the estimated average volume, and the desired sampling error rate were used to calculate the cost of forest resource inventories. Thus, 10 sampling points were extracted for each sampling method, and the factors required for cost analysis were calculated via a field survey. As a result, the field survey cost per ha using the random sampling method was found to be have the lowest cost, regardless of the desired sampling error rate, followed by the systematic sampling method, and the line transect method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.