• Title/Summary/Keyword: traffic parameter

Search Result 336, Processing Time 0.023 seconds

Worst-case Development and Evaluation for Vehicle Dynamics Controller in UCC HILS (차량자세제어 최악상황 개발 및 UCC HILS 시스템 기반 성능 평가)

  • Kim, Jin-Yong;Jung, Do-Hyun;Jeong, Chang-Hyun;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.30-36
    • /
    • 2011
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA Sine with dwell steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes useful worst case based upon the existing worst case scenarios mentioned above and worst case evaluation for vehicle dynamic controller in simulation basis and UCC HILS. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of both yaw rate and side slip angle. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle dynamic control system.

Evaluation on Flexural Performance of Precast Bridge Decks with Ribbed Connection (요철형 이음단면을 갖는 프리캐스트 교량 바닥판의 휨성능 평가)

  • Shin, Dong-Ho;Park, Se-Jin;Oh, Hyun-Chul;Kim, In-Gyu;Kim, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2015
  • Due to the increasing number of deteriorated bridges worldwide, the importance of maintenance and replacement of existing bridges are being emphasized. Cast-in-place concrete deck which is mainly applied to deck replacement of existing bridges have problems such as deterioration concerns by initial crack, labor cost increase, difficulties of maintenance and replacement, construction time increase, and indirect cost increase by traffic congestion. On the contrary, a precast concrete deck is considered as an effective alternative because of its quality assurance and accelerated construction. The connection method ensuring the required strength and durability is especially important, because the connection part of the precast concrete deck is vulnerable to cracks and leakage. Therefore, this study proposes precast bridge decks with ribbed connection which are more improved than existing bridge deck joints, and flexural performance is verified through various parameter tests.

Greenhouse Gas and Pollutant Emission from Light-Duty Vehicles Regarding the Relative Positive Acceleration (주행패턴의 상대 가속도에 따른 중소형 자동차의 온실가스 및 대기오염물질 배출 특성)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Park, Kyung-Kyun;Park, Jun-Hong;Park, Yong-Hee;Hong, Ji-Hyung;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 2010
  • Although driving patterns strongly influence greenhouse gas and air pollutant emission rate from light duty vehicles, emission measurements have been mainly based on chassis dynamometer testing with one standard driving pattern. And there has been limited work on quantifying the independent effect of driving parameters on emission rate because of multidimensional nature of real-world driving pattern. The objective of this study is to obtain the quantitative effect of relative positive acceleration (RPA) on vehicle emission rate. RPA has been used to define the occurrence of acceleration demanding large amounts of power in certain driving distance and shown to be a significant affecting parameter for real-world emission rate. 40 driving patterns have been developed with fixed driving parameters to investigate independent effect of RPA. For the same values of average vehicle speed and power, the trend in carbon dioxide emission rate and fuel consumption with respect to RPA is very clear. Emission rate of nitrogen oxide and particulate matter also increase with respect to RPA, but the trend is less clear. Carbon dioxide emission from diesel vehicle appear to be more affected by high accelerations compared to that from gasoline vehicle because of high intake air restriction during acceleration caused by turbocharger and intercooler. The results have implications for the possible reduction of environmental effects through better traffic planning and management, driver education and car design.

Worst Case Scenario Generation on Vehicle Dynamic Stability and Its Application (주행 안정성을 고려한 최악 상황 시나리오 도출 및 적용)

  • Jung, Dae-Yi;Jung, Do-Hyun;Moon, Ki-Hyun;Jeong, Chang-Hyun;Noh, Ki-Han;Choi, Hyung-Jeen
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios mentioned above and its application in simulation basis. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of either roll angle or yaw rate. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition (ex.2-inch wheel lift). Additionally, as an application, the worst case steering maneuver is acquired for the vehicle to operate with a simple ESP system. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle system both with an intelligent safety control system and without it.

Model-based Macroblock Layer Rate Control for Low Bit Rate Video Coding (저전송률 비디오 압축을 위한 모델 기반 매크로블록 레이어 비트율 제어)

  • Park, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.50-57
    • /
    • 2009
  • This paper presents a new model-based macroblock layer rate control algorithm for low bit rate video coding which generates output bits corresponding to a target bit budget. The H.264 standard uses various coding modes and optimization methods to improve the compression performance, which makes it difficult to control the generated traffic accurately in low bit rate environments. In the proposed scheme, we first estimate MAD values of macroblocks in a frame and define a target remaining bits using the estimated MAD values before encoding each macroblock. If a difference between the target value and the actual value is greater than a threshold value, the quantization parameter is adjusted to decrease the difference. It is shown by experimental results that the new algorithm can obtain more than 66% decrease of the difference between the target bits and the resulting bits for a frame with the PSNR performance better than that of the existing rate control algorithm.

An Adaptive Delay Control based on the Transmission Urgency of the Packets in the Wireless Networks (무선망에서 패킷의 전송 긴급성을 고려한 적응적 지연 제어 방안)

  • Jeong, Dae-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.44-53
    • /
    • 2010
  • This paper proposes a traffic management policy for delay control in the wireless networks. The so-called EDD(Earliest Due Date) scheme is adopted as the packet scheduling policy, so that the service provision is performed in the order of the transmission urgency of the backlogged packets. In addition, we derive a formula to determine the contention window, one of the MAC parameters, with the goal of minimizing the non-work conserving characteristics of the traditional MAC scheme. This method eliminates the burden of the class-wise parameter settings which is typically required for the priority control. Simulations are performed to show the validity of the proposed scheme in comparison with the policy that adopts the class-level queue management such as the IEEE 802.11e standard. Smaller delays and higher rates of delay guarantees are observed throughout the experiments.

A Study on Measurement and Analysis of Pilot Channel Power at CDMA Communication Network (CDMA통신망에서 파일롯 채널전력 측정 및 분석에 관한 연구)

  • Jeong, Ki-Hyeok;Ra, Keuk-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.6 s.360
    • /
    • pp.31-39
    • /
    • 2007
  • In this paper, a system for real-time or periodic measurement and analysis of RF parameters such as forward transmit power and pilot power in CDMA base station systems is proposed. Such RF characteristic parameter measurement can be prevented from system fault and used to achieve optimal service quality and maximum investment return through cell coverage expansion, subscriber capacity increase and so on. For forward power measurement, the local oscillator frequency for the detector is varied so that the transmit power for all channels can be measured. The channel power measurement can be used to analyze the variation in transmit power for changes in voice traffic. By comparing to forward $E_c/I_o$, the pilot channel power can be deducted, which can be used to determine uy degradation in transmit section modules such as the high dover amplifier. Since an accurate analysis of carefully measured data using the CDMA level detector must be made, the system is designed so that measurement errors due to changes in crest factor with modulation method can be overcome.

Development of Design Method for Reinforced Roadbed Considering Plastic Settlement for High-speed Railway (고속철도에서의 소성침하를 고려한 강화노반 설계기법 개발)

  • Choi, Chan-Yong;Choi, Won-Il;Han, Sang-Jae;Jung, Jae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.55-69
    • /
    • 2013
  • An alternative design method of existing methods based on elastic theory the design method of roadbed considering plastic deformation of roadbed and stress-strain at roadbed materials with the cyclic loading of trains passing. The characteristics of the developed design method considering traffic load, number of cyclic loading and resilience modulus of roadbed materials can evaluate elastic strain as well as plastic settlement with allowable design criteria. The proposed design method is applied to standard roadbed section drawing of HONAM high-speed railway considering design conditions such as allowable elastic and plastic settlement, train speed, the tonnage of trains. As a result, required levels of resilience modulus model parameter ($A_E$), unconfined compressive strength, types of soil material were evaluated.

Co-Channel Interference Mitigation and System Throughput Maximization Using Hybrid Joint Reuse Partitioning in Multimedia Mobile Communications (멀티미디어 이동 통신에서 Hybrid Joint 주파수 재사용 구간을 이용한 동일 채널 간섭 억제 및 시스템 전송량 최대화 방법)

  • Kim, Jeong-Su
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.5 s.120
    • /
    • pp.465-470
    • /
    • 2007
  • The co-channel interference is a primary factor of loss in multimedia mobile communications. In this paper, we present a performance of the frequency reuse partitioning to refrain the co-channel interference and maximize system performance. First, we analyze the co-channel interference using the frequency reuse partitioning through the statistical modeling. From this results, we decide on the frequency reuse partitioning for the system throughput which is maximized. Finally, analysis and simulation results show that the frequency reuse partitioning based cellular system can mitigate the co-channel interference and maximize the system throughput. The experimental results show that system throughput is maximized from 0.7 to 0.8 according to traffic road. We can maximize the system throughput using the results with cellular system design parameter.

Developing a method to estimate vehicle speeds in a low-cost vehicle detector with an inclined sensor (사선형 센서를 이용한 저가 검지장비의 차량속도 추정방법 개발)

  • Kim, Hyoung-Soo;Oh, Ju-Sam
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-67
    • /
    • 2009
  • With the development of high-cost vehicle detectors, low-cost detectors have also been studied due to the advantage that more detectors are provided within limited budgets. This study proposed a method to estimate vehicle speeds using vehicles' track data from auto manufacturers and time stamps obtained when vehicles' tires pass an inclined sensor (here, a tape switch sensor). In speed estimation, small vehicles and large vehicles is distinguished according to the ratio of time stamps for a wheelbase and a rear track obtained from a tape switch sensor. In particular, speed estimation can be adjusted through a parameter to determine vehicles' size so as to take into account location properties such as vehicles' classification ratio. The low-cost vehicle detector with an inclined sensor proposed in this study is expected to be widely utilized to monitor traffic conditions thanks to low cost.

  • PDF