• 제목/요약/키워드: traditional news media

검색결과 67건 처리시간 0.026초

K 패션에 대한 글로벌 미디어 보도 경향 분석 -다이내믹 토픽 모델링(Dynamic Topic Modeling)의 적용- (Analysis of Global Media Reporting Trends for K-fashion -Applying Dynamic Topic Modeling-)

  • 안효선;김지영
    • 한국의류학회지
    • /
    • 제46권6호
    • /
    • pp.1004-1022
    • /
    • 2022
  • This study seeks to investigate K-fashion's external image by examining the trends in global media reporting. It applies Dynamic Topic Modeling (DTM), which captures the evolution of topics in a sequentially organized corpus of documents, and consists of text preprocessing, the determination of the number of topics, and a timeseries analysis of the probability distribution of words within topics. The data set comprised 551 online media articles on 'Korean fashion' or 'K-fashion' published on Google News between 2010 and 2021. The analysis identifies seven topics: 'brand look and style,' 'lifestyle,' 'traditional style,' 'Seoul Fashion Week (SFW) event,' 'model size,' 'K-pop,' and 'fashion market,' as well as annual topic proportion trends. It also explores annual word changes within the topic and indicates increasing and decreasing word patterns. In most topics, the probability distribution of the word 'brand' is confirmed to be on the increase, while 'digital,' 'platform,' and 'virtual' have been newly created in the 'SFW event' topic. Moreover, this study confirms the transition of each K-fashion topic over the past 12 years, along with various factors related to Hallyu content, traditional culture, government support, and digital technology innovation.

인기도 기반의 온라인 추천 뉴스 기사와 전문 편집인 기반의 지면 뉴스 기사의 유사성과 중요도 비교 (Comparisons of Popularity- and Expert-Based News Recommendations: Similarities and Importance)

  • 서길수;이성원;서응교;강혜빈;이승원;이은곤
    • Asia pacific journal of information systems
    • /
    • 제24권2호
    • /
    • pp.191-210
    • /
    • 2014
  • As mobile devices that can be connected to the Internet have spread and networking has become possible whenever/wherever, the Internet has become central in the dissemination and consumption of news. Accordingly, the ways news is gathered, disseminated, and consumed have changed greatly. In the traditional news media such as magazines and newspapers, expert editors determined what events were worthy of deploying their staffs or freelancers to cover and what stories from newswires or other sources would be printed. Furthermore, they determined how these stories would be displayed in their publications in terms of page placement, space allocation, type sizes, photographs, and other graphic elements. In turn, readers-news consumers-judged the importance of news not only by its subject and content, but also through subsidiary information such as its location and how it was displayed. Their judgments reflected their acceptance of an assumption that these expert editors had the knowledge and ability not only to serve as gatekeepers in determining what news was valuable and important but also how to rank its value and importance. As such, news assembled, dispensed, and consumed in this manner can be said to be expert-based recommended news. However, in the era of Internet news, the role of expert editors as gatekeepers has been greatly diminished. Many Internet news sites offer a huge volume of news on diverse topics from many media companies, thereby eliminating in many cases the gatekeeper role of expert editors. One result has been to turn news users from passive receptacles into activists who search for news that reflects their interests or tastes. To solve the problem of an overload of information and enhance the efficiency of news users' searches, Internet news sites have introduced numerous recommendation techniques. Recommendations based on popularity constitute one of the most frequently used of these techniques. This popularity-based approach shows a list of those news items that have been read and shared by many people, based on users' behavior such as clicks, evaluations, and sharing. "most-viewed list," "most-replied list," and "real-time issue" found on news sites belong to this system. Given that collective intelligence serves as the premise of these popularity-based recommendations, popularity-based news recommendations would be considered highly important because stories that have been read and shared by many people are presumably more likely to be better than those preferred by only a few people. However, these recommendations may reflect a popularity bias because stories judged likely to be more popular have been placed where they will be most noticeable. As a result, such stories are more likely to be continuously exposed and included in popularity-based recommended news lists. Popular news stories cannot be said to be necessarily those that are most important to readers. Given that many people use popularity-based recommended news and that the popularity-based recommendation approach greatly affects patterns of news use, a review of whether popularity-based news recommendations actually reflect important news can be said to be an indispensable procedure. Therefore, in this study, popularity-based news recommendations of an Internet news portal was compared with top placements of news in printed newspapers, and news users' judgments of which stories were personally and socially important were analyzed. The study was conducted in two stages. In the first stage, content analyses were used to compare the content of the popularity-based news recommendations of an Internet news site with those of the expert-based news recommendations of printed newspapers. Five days of news stories were collected. "most-viewed list" of the Naver portal site were used as the popularity-based recommendations; the expert-based recommendations were represented by the top pieces of news from five major daily newspapers-the Chosun Ilbo, the JoongAng Ilbo, the Dong-A Daily News, the Hankyoreh Shinmun, and the Kyunghyang Shinmun. In the second stage, along with the news stories collected in the first stage, some Internet news stories and some news stories from printed newspapers that the Internet and the newspapers did not have in common were randomly extracted and used in online questionnaire surveys that asked the importance of these selected news stories. According to our analysis, only 10.81% of the popularity-based news recommendations were similar in content with the expert-based news judgments. Therefore, the content of popularity-based news recommendations appears to be quite different from the content of expert-based recommendations. The differences in importance between these two groups of news stories were analyzed, and the results indicated that whereas the two groups did not differ significantly in their recommendations of stories of personal importance, the expert-based recommendations ranked higher in social importance. This study has importance for theory in its examination of popularity-based news recommendations from the two theoretical viewpoints of collective intelligence and popularity bias and by its use of both qualitative (content analysis) and quantitative methods (questionnaires). It also sheds light on the differences in the role of media channels that fulfill an agenda-setting function and Internet news sites that treat news from the viewpoint of markets.

한복 브랜드의 현황과 미적특성 (A Study on the Current Status of Hanbok Brands and Aesthetic Characteristics)

  • 배리듬;이미숙;김은정
    • 패션비즈니스
    • /
    • 제20권1호
    • /
    • pp.127-141
    • /
    • 2016
  • Korea traditional dresses are making news everyday through popular media and a number of exhibitions and fashion shows that have been held as a way to activate the use of the hanbok. This study intends to examine the current status of handbook brands and analyze the aesthetic characteristics of the hanbok. This study defined the terms related with the hanbok and examined the chronological changes in the hanbok through a literature review, an examination of the aesthetic characteristics of Korean traditional clothing, and an analysis of the aesthetic characteristics by dividing currently available hanbok brands in to the traditional hanbok. According to the results of the study, hanbok brands were divided into Traditional Hanbok, Life Hanbok, and New Hanbok. The Traditional Hanbok brands represented traditional beauty, the beauty of formality, symbolic beauty, and the beauty of nature. The Life Hanbok brands represented symbolic beauty, natural beauty, the beauty of blending, and the proportional beauty. The New Hanbok brands represented natural beauty, unproportaional beauty, the beauty of line, and the beauty of moderation. Therefore the New Hanboks gave changes to the traditional clothing and the unique clothing of our nation. Its formative elements coexist according to their characteristics.

텍스트 분석을 활용한 정보의 수요 공급 기반 뉴스 가치 평가 방안 (A Method for Evaluating News Value based on Supply and Demand of Information Using Text Analysis)

  • 이동훈;최호창;김남규
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.45-67
    • /
    • 2016
  • 최근 정보 유통의 주요 매체인 인터넷 뉴스와 SNS의 매체 간 특성 차이를 주목한 많은 연구가 있었음에도 불구하고, 양 매체의 차이를 정보의 수요 및 공급 관점에서 파악한 연구는 상대적으로 매우 부족하다. 일반적으로 새로운 정보는 언론사의 뉴스 기사를 통해 대중에게 노출되고, 대중은 이러한 기사에 대한 의견 또는 추가정보를 SNS를 통해 공유함으로써 해당 정보를 수용함과 동시에 확산시킨다. 이러한 측면에서 언론사가 뉴스를 제공하는 행위를 정보의 공급으로 파악할 수 있으며, 대중은 SNS를 통해 이에 대한 관심을 능동적으로 나타냄으로써 해당 정보에 대한 소비 수요를 표출하는 것으로 이해할 수 있다. 이는 상품 및 서비스의 가격이 수요와 공급의 관계에 의해 결정되는 것과 유사한 원리로, 정보의 가치를 정보 수요와 정보 공급의 관계에 기반을 두어 측정할 수 있음을 시사한다. 본 연구에서는 정보 공급의 대표 매체로 인터넷 뉴스 기사를, 정보 수요를 나타내는 대표 매체로 트위터를 선정하고, 특정 이슈에 대한 뉴스의 정보로서의 가치를 이와 관련된 트위터의 양으로 평가하는 뉴스가치지수(NVI, News Value Index)를 고안하여 제시한다. 구체적으로 제안 방법론은 각 이슈별로 NVI를 도출하고 이를 통해 시간의 흐름에 따른 정보 가치의 변화를 시각화하여 나타낸다. 또한 본 연구에서는 제안 방법론의 실무 적용 가능성을 평가하기 위해 인터넷 뉴스 387,018건과 트윗 31,674,795건에 대한 실험을 수행하였다. 그 결과 대부분의 이슈가 전체 정보 시장의 평균 가치에 수렴하는 형태로 변화함을 알 수 있었으며, 꾸준히 평균 이상의 가치를 가지며 정보 시장을 장악하는 등 특이한 양상을 보이는 흥미로운 이슈도 존재함을 파악할 수 있었다.

청소년(만 18-19세) 유권자의 정치 정보 이용행태와 정치효능감이 투표 의도에 미치는 영향 (The Effect of Youth (18-19 years old) Voters' Use of Political Information and Political Efficacy on Voting Intentions)

  • 이성진;김응표
    • 한국콘텐츠학회논문지
    • /
    • 제21권10호
    • /
    • pp.344-355
    • /
    • 2021
  • 제21대 총선(2020년 4월 15일) 때부터 투표 연령이 만 18세로 낮아짐에 따라 투표를 처음 하는 유권자의 정치 뉴스 이용, 정치 관심의 동기, 정치 매체 신뢰도를 살펴보았다. 이어서 이들의 정치효능감이 투표 의도에 어떠한 영향을 미치는지 분석하였다. 참여 대상자의 설문을 통한 연구 결과 유권자의 정치 뉴스 이용은 TV와 포털을 중심으로 정치 정보를 획득하고 있었다. 그리고 이들은 전통적인 매체인 라디오와 신문의 이용이 낮게 나타났다. 또한 미디어가 전달하는 기사를 통해 정치에 관심을 갖게 되었으며, 지상파 TV의 보도와 토론회의 통해 제공되는 정치 정보를 신뢰하는 것으로 나타났다. 끝으로 이 세대들도 정치효능감이 높을수록 투표참여의지가 높은 것을 확인할 수 있었다. 정치에 상대적으로 관심이 낮은 것으로 평가받는 젊은 세대의 정치 참여를 높이기 위해서는 미디어의 역할이 중요함을 재확인할 수 있었다.

개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법 (Content-based Recommendation Based on Social Network for Personalized News Services)

  • 홍명덕;오경진;가명현;조근식
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.57-71
    • /
    • 2013
  • 세계에는 수많은 사람들이 살아가고 있고, 사람들의 일상으로부터 매일, 매 시간 단위로 새로운 뉴스가 발생한다. 발생되는 뉴스는 예정된 일과 예상하지 못한 일들을 포함하고 있다. 발생하는 뉴스의 거대한 양과 이를 전달하는 수많은 미디어들로 인해 사람들은 뉴스 콘텐츠를 이용하는데 많은 시간을 소비하게 된다. 하지만 미디어에 시시각각 나타나는 속보와 실시간 이슈의 대부분이 가십 기사로 이루어져 있어 사용자들이 자신의 성향에 맞는 뉴스를 선별하고, 뉴스로부터 정보를 획득하는 것은 쉽지 않은 일이다. 또한 사용자의 관심사가 시간에 따라 변하기 때문에 뉴스 제공에 있어 사용자의 변하는 관심사를 반영하는 것이 요구된다. 본 논문에서는 사용자의 최근 관심사를 기반으로 사용자 선호도에 맞는 뉴스를 제공하기 위한 콘텐츠 기반의 추천 기법 및 시스템을 제안한다. 사용자의 최근 선호도를 파악하기 위하여 소셜 네트워크 서비스인 Facebook 사용자의 정보와 최근 게시글을 이용하여 동적으로 사용자 프로파일을 생성하여 이를 뉴스 서비스에 활용하고, 사용자 선호도에 적합한 뉴스를 추출하기 위해서 뉴스 콘텐츠의 분석을 요구한다. 뉴스 콘텐츠 분석을 위해 미디어에서 제공되는 뉴스의 카테고리를 사용하고, 뉴스 방송원고의 분석 및 주요 키워드 추출을 통해 뉴스 프로파일을 생성한다. 사용자 프로파일과 뉴스 프로파일 간의 유사도 측정을 위해서는 두 프로파일 간 형식의 일치화가 요구되므로 사용자 프로파일을 뉴스 프로파일과 동일한 형태로 생성한다. 사용자가 시스템에 접속하면 시스템은 사용자 프로파일에 명시된 선호도를 기반으로 뉴스 프로파일과의 유사도를 측정하고, 사용자 선호도에 가장 적합한 뉴스들을 제공하게 된다. 또한 사용자에게 제공된 뉴스 프로파일과 다른 뉴스 프로파일들 간에 유사도를 측정하여 유사도가 높은 관련된 뉴스들을 제공하게 된다. 제안한 개인화된 뉴스 서비스의 성능을 평가하기 위해 사용자에게 추천된 뉴스에 대한 사용자 평가와 시스템 예측값의 오차를 기반으로 6Sub-Vectors 벤치마크 알고리즘과 성능 평가를 수행하였고, 실험 결과를 통해 제안한 시스템의 우수성을 입증하였다.

주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안 (Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary)

  • 유은지;김유신;김남규;정승렬
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.95-110
    • /
    • 2013
  • 최근 다양한 소셜미디어를 통해 생성되는 비정형 데이터의 양은 빠른 속도로 증가하고 있으며, 이를 저장, 가공, 분석하기 위한 도구의 개발도 이에 맞추어 활발하게 이루어지고 있다. 이러한 환경에서 다양한 분석도구를 통해 텍스트 데이터를 분석함으로써, 기존의 정형 데이터 분석을 통해 해결하지 못했던 이슈들을 해결하기 위한 많은 시도가 이루어지고 있다. 특히 트위터나 페이스북을 통해 실시간에 근접하게 생산되는 글들과 수많은 인터넷 사이트에 게시되는 다양한 주제의 글들은, 방대한 양의 텍스트 분석을 통해 많은 사람들의 의견을 추출하고 이를 통해 향후 수익 창출에 기여할 수 있는 새로운 통찰을 발굴하기 위한 움직임에 동기를 부여하고 있다. 뉴스 데이터에 대한 오피니언 마이닝을 통해 주가지수 등락 예측 모델을 제안한 최근의 연구는 이러한 시도의 대표적 예라고 할 수 있다. 우리가 여러 매체를 통해 매일 접하는 뉴스 역시 대표적인 비정형 데이터 중의 하나이다. 이러한 비정형 텍스트 데이터를 분석하는 오피니언 마이닝 또는 감성 분석은 제품, 서비스, 조직, 이슈, 그리고 이들의 여러 속성에 대한 사람들의 의견, 감성, 평가, 태도, 감정 등을 분석하는 일련의 과정을 의미한다. 이러한 오피니언 마이닝을 다루는 많은 연구는, 각 어휘별로 긍정/부정의 극성을 규정해 놓은 감성사전을 사용하며, 한 문장 또는 문서에 나타난 어휘들의 극성 분포에 따라 해당 문장 또는 문서의 극성을 산출하는 방식을 채택한다. 하지만 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다. 본 연구는 특정 어휘의 극성은 한 가지로 고유하게 정해져 있지 않으며, 분석의 목적에 따라 그 극성이 상이하게 나타날 수도 있다는 인식에서 출발한다. 동일한 어휘의 극성이 해석하는 사람의 입장에 따라 또는 분석 목적에 따라 서로 상이하게 해석되는 현상은 지금까지 다루어지지 않은 어려운 이슈로 알려져 있다. 구체적으로는 주가지수의 상승이라는 한정된 주제에 대해 각 관련 어휘가 갖는 극성을 판별하여 주가지수 상승 예측을 위한 감성사전을 구축하고, 이를 기반으로 한 뉴스 분석을 통해 주가지수의 상승을 예측한 결과를 보이고자 한다.

거시적 이슈 트래킹의 한계 극복을 위한 개인 관심 트래킹 방법론 (Individual Interests Tracking : Beyond Macro-level Issue Tracking)

  • 류신;김남규
    • 한국IT서비스학회지
    • /
    • 제13권4호
    • /
    • pp.275-287
    • /
    • 2014
  • Recently, the volume of unstructured text data generated by various social media has been increasing rapidly; consequently, the use of text mining to support decision-making has also been growing. In particular, academia and industry are paying significant attention to topic analysis in order to discover the main issues from a large volume of text documents. Topic analysis can be regarded as static analysis because it analyzes a snapshot of the distribution of various issues. In contrast, some recent studies have attempted to perform dynamic issue tracking, which analyzes and traces issue trends during a predefined period. However, most traditional issue tracking methods have a common limitation : when a new period is included, topic analysis must be repeated for all the documents of the entire period, rather than being conducted only on the new documents of the added period. Additionally, traditional issue tracking methods do not concentrate on the transition of individuals' interests from certain issues to others, although the methods can illustrate macro-level issue trends. In this paper, we propose an individual interests tracking methodology to overcome the two limitations of traditional issue tracking methods. Our main goal is not to track macro-level issue trends but to analyze trends of individual interests flow. Further, our methodology has extensible characteristics because it analyzes only newly added documents when the period of analysis is extended. In this paper, we also analyze the results of applying our methodology to news articles and their access logs.

온라인상에서 부정적 편향에 따른 평판 확산 차이에 관한 연구 : 선거 사례를 중심으로 (A Study on the Impact of Negativity Bias on Online Spread of Reputation : With a Case Study of Election Campaign)

  • 김나라;신경식
    • 한국IT서비스학회지
    • /
    • 제14권1호
    • /
    • pp.263-276
    • /
    • 2015
  • As a social being, people can cooperate and control one another through the power of reputation, which is a critical opinion of someone given by others. Nevertheless, there have been obstacles in clarifying the identity of traditional types of reputation, for they are mostly words of mouth passed among members of a society. However, due to dramatic technological advancement and widespread use of the Internet and social media, now we can clearly see and analyze written reputations, which used to be passed only from mouth to mouth. Against this background, this study examines whether a negativity bias-a notion that an event of a more negative nature has a greater effect on one's psychological state than a positive event-applies to spread of reputation online, and examines related factors and effects. To this end, reputation-related online comments left by social media users during the election period of Korea's 6th provincial election on 4 June 2014 were analyzed. For the analysis, a Bass diffusion model was used, which is based on the innovation diffusion theory. The analysis results confirmed that, at online forum, negative reputations spread more quickly and more widely than positive ones, had a greater impact, and mass media such as online news outlets had a significant influence on spread of reputation online.

정치 도메인에서 신조어휘의 효과적인 추출 및 의미 분석에 대한 연구 (Study on Effective Extraction of New Coined Vocabulary from Political Domain Article and News Comment)

  • 이지현;김재홍;조예성;이민구;최혜봉
    • 문화기술의 융합
    • /
    • 제7권2호
    • /
    • pp.149-156
    • /
    • 2021
  • 정치적 사안에 대한 대중의 의견과 인식을 객관적으로 이해하기 위한 방법으로 텍스트 마이닝을 통한 빅데이터 분석을 수행할 수 있다. 기존 어휘 사전에 기반한 텍스트 마이닝 알고리즘은 신조어와 같이 사전에 수록되지 않은 어휘를 분석하는데 한계가 나타난다. SNS를 통해 나타나는 사용자들의 의견은 많은 경우 신조어와 비속어를 포함하는데, 이러한 어휘들을 효과적으로 분석하지 못한다면 정확한 대중의 인식과 의견을 파악하기 어렵게 된다. 본 논문은 정치 섹션의 뉴스 댓글로부터 정치적 의미성을 지니는 신조어와 비속어를 효과적으로 추출하는 방법을 제안하고, 추출한 신조어휘들의 의미와 맥락을 이해하기 위한 다양한 방법을 제시하였음.