• Title/Summary/Keyword: traditional Chinese medicine database and analysis platform

Search Result 12, Processing Time 0.027 seconds

Usefulness of Network Pharmacology Analysis in Exploring Herbal Medicine Resources for the Treatment of Dementia (치매 치료를 위한 한약 자원 탐색에서 네트워크 약리학 분석법의 유용성)

  • Suin Cho
    • Journal of TMJ Balancing Medicine
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2022
  • Objectives: Dementia is a disease in which a person maintains a normal intellectual level during the growth period, but has acquired cognitive impairment and personality change. In this study, we tried to check whether the network pharmacology analysis method is useful in the search for herbal medicine resources for the treatment of dementia. Methods: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database is a database frequently used in Chinese medicine research. We used the TCMSP to identify herbal medicines and their molecular targets that can be used for dementia by using network pharmacology research methods. Results: It was possible to select 28 types of components that are expected to be active by applying them to the living body, and 75 types of targets that these components act on were secured. In addition, 16 kinds of drugs were identified by checking the drugs containing 28 kinds of ingredients, and it was found that Radix Salviae contained 2 kinds of the selected 28 kinds of ingredients. Conclusions: Through this study, we were able to identify ingredients, drugs, and targets that can be used for basic and clinical research on dementia.

A network pharmacology approach to explore the potential role of Panax ginseng on exercise performance

  • Kim, Jisu;Lee, Kang Pa;Kim, Myoung-Ryu;Kim, Bom Sahn;Moon, Byung Seok;Shin, Chul Ho;Baek, Suji;Hong, Bok Sil
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.3
    • /
    • pp.28-35
    • /
    • 2021
  • [Purpose] As Panax ginseng C. A. Meyer (ginseng) exhibits various physiological activities and is associated with exercise, we investigated the potential active components of ginseng and related target genes through network pharmacological analysis. Additionally, we analyzed the association between ginseng-related genes, such as the G-protein-coupled receptors (GPCRs), and improved exercise capacity. [Methods] Active compounds in ginseng and the related target genes were searched in the Traditional Chinese Medicine Database and Analysis Platform (TCMSP). Gene ontology functional analysis was performed to identify biological processes related to the collected genes, and a compound-target network was visualized using Cytoscape 3.7.2. [Results] A total of 21 ginseng active compounds were detected, and 110 targets regulated by 17 active substances were identified. We found that the active compound protein was involved in the biological process of adrenergic receptor activity in 80%, G-protein-coupled neurotransmitter in 10%, and leucocyte adhesion to arteries in 10%. Additionally, the biological response centered on adrenergic receptor activity showed a close relationship with G protein through the beta-1 adrenergic receptor gene reactivity. [Conclusion] According to bioavailability analysis, ginseng comprises 21 active compounds. Furthermore, we investigated the ginseng-stimulated gene activation using ontology analysis. GPCR, a gene upregulated by ginseng, is positively correlated to exercise. Therefore, if a study on this factor is conducted, it will provide useful basic data for improving exercise performance and health.

Systemic Analysis of Antibacterial and Pharmacological Functions of Anisi Stellati Fructus (대회향의 시스템 약리학적 분석과 항균작용)

  • Han, Jeong A;Choo, Ji Eun;Shon, Jee Won;Kim, Youn Sook;Suh, Su Yeon;An, Won Gun
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • The purpose of this study was to acquire the active compounds of Anisi stellati fructus (ASF) and to analyze the genes and diseases it targets, focusing on its antibacterial effects using a system pharmacological analysis approach. Active compounds of ASF were obtained through the Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform. This contains the pharmacokinetic properties of active compounds and related drug-target-disease networks, which is a breakthrough in silico approach possible at the network level. Gene information of targets was gathered from the UnitProt Database, and gene ontology analysis was performed using the David 6.8 Gene Functional Classification Tool. A total of 201 target genes were collected, which corresponded to the nine screened active compounds, and 47 genes were found to act on biological processes related to antimicrobial activity. The representative active compounds involved in antibacterial action were luteolin, kaempferol, and quercetin. Among their targets, Chemokine ligand2, Interleukin-10, Interleukin-6, and Tumor Necrosis Factor were associated with more than three antimicrobial biological processes. This study has provided accurate evidence while saving time and effort to select future laboratory research materials. The data obtained has provided important data for infection prevention and treatment strategies.

Systems Pharmacological Analysis of Dichroae Radix in Anti-Tumor Metastasis Activity (시스템 약리학적 분석에 의한 상산의 암전이 억제 효과)

  • Jee Ye Lee;Ah Yeon Shin;Hak Koon Kim;Won Gun An
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.295-313
    • /
    • 2023
  • Objectives : While treatments for cancer are advancing, the development of effective treatments for cancer metastasis, the main cause of cancer patient death, remains insufficient. Recent studies on Dichroae Radix have revealed that its active ingredients have the potential to inhibit cancer metastasis. This study aimed to investigate the cancer metastasis inhibitory effect of Dichroae Radix using network pharmacological analysis. Methods : The active compounds of Dichroae Radix have been identified using Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The UniProt database was used to collect each of information of all target proteins associated with the active compounds. To find the bio-metabolic processes associated with each target, the DAVID6.8 Gene Functional classifier tool was used. Compound-Target and Target-Pathway networks were analyzed via Cytoscape 3.40. Results : In total, 25 active compounds and their 62 non-redundant targets were selected through the TCMSP database and analysis platform. The target genes underwent gene ontology and pathway enrichment analysis. The gene list applied to the gene ontology analysis revealed associations with various biological processes, including signal transduction, chemical synaptic transmission, G-protein-coupled receptor signaling pathways, response to xenobiotic stimulus, and response to drugs, among others. A total of eleven genes, including HSP90AB1, CALM1, F2, AR, PAKACA, PTGS2, NOS2, RXRA, ESR1, ESR2, and NCOA1, were found to be associated with biological pathways related to cancer metastasis. Furthermore, nineteen of the active compounds from Dichroae Radix were confirmed to interact with these genes. Conclusions : The results provide valuable insights into the mechanism of action and molecular targets of Dichroae Radix. Notably, Berberine, the main active ingredient of Dichroae Radix, plays a significant role in degrading AR proteins in advanced prostate cancer. Further studies and validations can provide crucial data to advance cancer metastasis prevention and treatment strategies.

Network Pharmacological Analysis of Cnidii Fructus Treatment for Gastritis (벌사상자의 위염 치료 적용에 대한 네트워크 약리학적 분석)

  • Young-Sik Kim;Seungho Lee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.38 no.1
    • /
    • pp.22-26
    • /
    • 2024
  • The purpose of this study was to identify the applicability, main compounds, and target genes of Cnidii Fructus (CF) in the treatment of gastritis using network pharmacology. The compounds in CF were searched in Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and a database of medicinal materials and chemical compounds in Northeast Asian traditional medicine (TM-MC). The target gene information of the compounds was collected from pubchem and cross-compared with the gastritis-related target gene information collected from Genecard to derive the target genes. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the derived target genes. Afterwards, network analysis between compounds and disease target genes was performed using cytoscape. We identified 121 active compounds and 139 target genes associated with gastritis. Pathways derived from the GO biological process and KEGG pathway DB primarily focus on target genes related to inflammation (IL-6, IL-8, TNF production, NF-κB transcription factor activity, and NF-κB signaling pathway) and cell death (PI3K-Akt, FoxO). Major targets for CF treatment of gastritis include TP53, TNF, BCL2, EGFR, NFKB1, ABCB1, PPARG, PTGS2, IL6, IL1B, and SOD1, along with major compounds such as coumarin, osthol, hexadecanoic acid, oleic acid, linoleic acid, and stigmasterol. This study provided CF's applicability for gastritis, related compounds, and target information. Evaluating CF's effectiveness in a preclinical gastritis model suggests its potential use in clinical practice for digestive system diseases.

Network pharmacoligical analysis for selection between Saposhnikoviae Radix and Glehniae Radix focusing on ischemic stroke (방풍(防風)과 해방풍(海防風) 중 뇌경색 연구에 더욱 적합한 약재 선정을 위한 네트워크 약리학적 분석)

  • Jin Yejin;Lim Sehyun;Cho Suin
    • Herbal Formula Science
    • /
    • v.31 no.3
    • /
    • pp.171-182
    • /
    • 2023
  • Objectives : Saposhnikoviae Radix (SR) and Glehniae Radix (GR) have been frequently used in traditional medicine to treat diseases related to 'wind' syndrome, but there have been cases where it has been mixed in a state where the plant of origin is not clear. In this study, to select materials for conducting preclinical cerebral infarction research, the network pharmacology analysis method was used to select suitable medicinal materials for the study. Methods : In this study, a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) based network pharmacology analysis method was used, and oral bioavailability (OB), drug likeness (DL), Caco-2 and BBB permeability were utilized to select compounds with potential activity. For the values of each variable used in this study, OB ≥ 20%, DL ≥ 0.18, Caco-2 ≥ 0, and BBB ≥ -0.3 were applied, then networks of bioactive compounds, target proteins, and target diseases was constructed. STRING database was used to construct a protein-protein interaction network. Results : It was confirmed that SR rather than GR has various target proteins and target diseases based on network pharmacological analysis using TCMSP database. And it was analyzed that the bioactive compounds only in SR act more on neurovascular diseases, and both drugs are expected to be effectively used for cardiovascular diseases. Conclusions : In our future study, SR will be used in an ischemic stroke mouse model, and the mechanism of action will be explored focusing on apoptosis and cell proliferation.

Systemic Analysis of Antibacterial and Pharmacological Functions of Scutellariae Radix (시스템 약리학적 분석에 의한 황금의 항균효과)

  • Kim, Hyo Jin;Bak, Se Rim;Ha, Hee Jung;Kim, Youn Sook;Lee, Boo Kyun;An, Won Gun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.184-190
    • /
    • 2020
  • This study was performed to find antibacterial substances contained in Scutellariae Radix (SR) using a systems pharmacological analysis method and to establish an effective strategy for the prevention and treatment of infectious diseases. Analysis of the main active ingredients of SR was performed using Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database and Analysis Platform. 36 active compounds were screened by the parameter values of Drug-Likeness (DL), Oral Bioavailability (OB), and Caco-2 permeability (Caco-2), which were based on the drug absorption, distribution, metabolism, and excretion indicators. The UniProt database was used to obtain information on 159 genes associated with active compounds. The main active compounds with antibacterial effects were wogonin, β-sitosterol, baicalein, acacetin and oroxylin-A. Target proteins associated with the antibacterial action were chemokine ligand 2, interleukin-6, tumor necrosis factor, caspase-8,9 and mitogen-activated protein kinase 14. In the future, systems pharmacological analysis of traditional medicine will be able to make it easy to find the important mechanism of action of active substances present in natural medicines and to optimize the efficacy of medicinal effects for combinations of major ingredients to help treat certain diseases.

Basic network pharmacological analysis of Salvia miltiorrhiza root for further application to an animal stroke model (단삼(丹參)을 뇌졸중 동물모델에 적용하기 위한 기초적인 네트워크 약리학 분석)

  • Choi, Myeongjin;Yang, Wonjin;Lee, Byoungho;Cho, Suin
    • Herbal Formula Science
    • /
    • v.29 no.1
    • /
    • pp.19-31
    • /
    • 2021
  • Objectives : The root of Salvia miltiorrhiza, known as 'Dansam (DS, 丹參)', is used for and treating cardiovascular diseases based on its efficacy of promoting blood circulation and breaking through a blood stasis. In this study, we would like to see if DS could be effectively used for stroke from the perspective of network pharmacology. Methods : The analysis was conducted using Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database to derive the main active compounds of DS and identify the mechanism of each compound acting on the human body. The networks between compounds, target protein and disease were expressed through Cytoscape. Protein-protein interaction (PPI) analysis was performed using STRING database. Results : Fifty two active compounds of DS were identified by screening the ingredients of DS through TCMSP. Based on the networks of these compounds with target protein and disease, it can be said that DS might be effective for preventing and treating stroke. PPI result showed that adrenergic receptor has many interactions among proteins, indicating its significance in stroke pathway. Conclusion : In this study, we derived target proteins and target diseases of DS that could be used in study of stroke. However, since it is uncertain if these targets can be controlled by DS extracts or not, we would like to confirm the results with further animal experiments.

Pharmacological Systemic Analysis of Curcumae Radix in Lipid Metabolism (시스템 분석을 통한 지질대사에서 울금의 약리작용)

  • Jo, Han Byeol;Kim, Ji Young;Kim, Min Sung;An, Won Gun;Lee, Jang-Cheon
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.237-250
    • /
    • 2018
  • Objectives : This study is a pharmacological network approach, aimed to identify the potential active compounds contained in Curcumae Radix, and their associated targets, to predict the various bio-reactions involved, and finally to establish the cornerstone for the deep-depth study of the representative mechanisms. Methods : The active compounds of Curcumae Radix have been identified using Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The UniProt database was used to collect each of information of all target proteins associated with the active compounds. To find the bio-metabolic processes associated with each target, the DAVID6.8 Gene Functional classifier tool was used. Compound-Target and Target-Pathway networks were analyzed via Cytoscape 3.40. Results : The target information from 32 potential active compounds of Curcumae Radix was collected through TCMSP analysis. The active compounds interact with 133 target genes engaging in total of 885 biological pathways. The most relevant pathway was the lipid-related metabolism, in which 3 representative active compounds were naringenin, oleic acid, and ${\beta}-sitosterol$. The mostly targeted proteins in the lipid pathway were ApoB, AKT1 and PPAR. Conclusions : The pharmacological network analysis is convenient approach to predict the overall metabolic mechanisms in medicinal herb research, which can reduce the processes of various experimental trial and error and provide key clues that can be used to validate and experimentally verify the core compounds.

Discovery of Herbal Medicine Resources through Network Pharmacology Analysis Predicted to Be Useful for Tourette Syndrome (네트워크 약리학 분석을 통한 뚜렛 증후군에 유용할 것으로 예측되는 한약 자원 탐색)

  • Lee, Byoungho;Cho, Suin
    • Journal of TMJ Balancing Medicine
    • /
    • v.10 no.1
    • /
    • pp.12-20
    • /
    • 2020
  • Objectives: Tourette syndrome (TS) is a disease that occurs evenly in many social classes. Despite the long experience of drug treatment, the preference is low due to various side effects. The aim of this study was to discover herbal medicine resources through network pharmacology analysis predicted to be useful for Tourette syndrome. Methods: We used Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) to identify herbal medicines that can be used for TS by using network pharmacology research methods and to predict the mechanism of action. After evaluating compounds of each identified herb, molecular target proteins and mechanisms of action were analyzed, focusing on compounds that are likely to exhibit clinical activity in consideration of the pharmacokinetic parameters of these individual compounds. Results: Fifty nine ingredients such as atropine, veraguensin, and nuciferin among the compounds contained in 48 types of medicinal herbs such as Daturae Flos (洋金花), Salviae Radix (丹参), and Nelumbinis Plumula (蓮子心) act on the D(2) dopamine receptor, which is a protein involved in the development of TS. It has been found that atropine, veraguensin, and nuciferin are highly likely to exhibit activity by acting on the G protein-coupled receptor signaling pathway. Conclusions: It can be used in conjunction with non-invasive treatment means such as FCST Yinyang Balancing Appliance with herbal therapy to bring about a significant therapeutic effect, and it will be possible to develop a treatment that can replace drug therapy used in Western medicine.