• Title/Summary/Keyword: tracking phenomenon

Search Result 111, Processing Time 0.027 seconds

A Study on Development and Application of a Particle Tracking Model for Predicting Water Quality in the Sea Area (해역의 수질예측을 위한 입자추적 모델의 개발 및 적용성에 관한 연구)

  • 정서훈;한동진
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.239-247
    • /
    • 1997
  • The numerical experiments using a particle tracking model have been performed for predicting the change of water Quality and shoreline. In present study, comparison of the numerical model results with the analytic solution shows that the point of the mainmum concentration and the distribution pattern is very similar. The reflection effect from the boundary was newly Introduced for making clear the effect of the closed boundary which set limits to application of a particle tracking model. The present model seems to reappear physical phenomenon well. This model shows well qualitative appearance of pollutant diffusion in Kwangan beach. Therefore, this model is regarded as a useful means for predicting diffusion movement of suspended sand, and change of water quality.

  • PDF

INVESTIGATION OF DRAG REDUCTION MECHANISM BY MICROBUBBLE INJECTION WITHIN A CHANNEL BOUNDARY LAYER USING PARTICLE TRACKING VELOCIMETRY

  • Hassan Yassin A.;Gutierrez-Torres C.C.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.763-778
    • /
    • 2006
  • Injection of microbubbles within the turbulent boundary layer has been investigated for several years as a method to achieve drag reduction. However, the physical mechanism of this phenomenon is not yet fully understood. Experiments in a channel flow for single phase (water) and two phase (water and microbubbles) flows with various void fraction values are studied for a Reynolds number of 5128 based on the half height of the channel and bulk velocity. The state-of-the art Particle Tracking Velocimetry (PTV) measurement technique is used to measure the instantaneous full-field velocity components. Comparisons between turbulent statistical quantities with various values of local void fraction are presented to elucidate the influence of the microbubbles presence within the boundary layer. A decrease in the Reynolds stress distribution and turbulence production is obtained with the increase of microbubble concentration. The results obtained indicate a decorrelation of the streamwise and normal fluctuating velocities when microbubbles are injected within the boundary layer.

Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers

  • Hoo, Choon Lih;Haris, Sallehuddin Mohamed;Chung, Edwin Chin Yau;Mohamed, Nik Abdullah Nik
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.177-189
    • /
    • 2015
  • The output of the controller is said to exceed the input limits of the plant being controlled when a control system operates in a non-linear region. This process is called the windup phenomenon. The windup phenomenon is not preferable in the control system because it leads to performance degradation, such as overshoot and system instability. Many anti-windup strategies involve switching, where the integral component differently operates between the linear and the non-linear states. The range of state for the non-overshoot performance is better illustrated by the boundary integral error plane than the proportional-integral (PI) plane in windup inspection. This study proposes a PI controller with a separate closed-loop integral controller and reference value set with respect to the input command and external torque. The PI controller is compared with existing conventional proportional integral, conditional integration, tracking back calculation, and integral state prediction schemes by using ScicosLab simulations. The controller is also experimentally verified on a direct current motor under no-load and loading conditions. The proposed controller shows a promising potential with its ability to eliminate overshoot with short settling time using the decoupling mode in both conditions.

Improved Particle Swarm Optimization Algorithm for Adaptive Frequency-Tracking Control in Wireless Power Transfer Systems

  • Li, Yang;Liu, Liu;Zhang, Cheng;Yang, Qingxin;Li, Jianxiong;Zhang, Xian;Xue, Ming
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1470-1478
    • /
    • 2018
  • Recently, wireless power transfer (WPT) via coupled magnetic resonances has attracted a lot of attention owing to its long operation distance and high efficiency. However, the WPT systems is over-coupling and a frequency splitting phenomenon occurs when resonators are placed closely, which leads to a decrease in the transfer power. To solve this problem, an adaptive frequency tracking control (AFTC) was used based on a closed-loop control scheme. An improved particle swarm optimization (PSO) algorithm was proposed with the AFTC to track the maximum power point in real time. In addition, simulations were carried out. Finally, a WPT system with the AFTC was demonstrated to experimentally validate the improved PSO algorithm and its tracking performance in terms of optimal frequency.

Optimizations of Air-trap Locations in the Speaker Encloser of Mobile Phone by Injection Molding Simulations (사출성형 시뮬레이션에 의한 휴대폰 스피커 인클로저의 에어트랩 위치 최적화)

  • Park, Ki-Yoon;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.85-90
    • /
    • 2011
  • In this paper a design procedure via computer-aided molding simulation is presented to optimize the air-trap locations in a speaker encloser of mobile phone. The molding flow simulation reveals that the race-tracking phenomenon is the dominant feature in the current mold design. In obtaining an optimal filling pattern, the local modifications of the wall thickness such as in a flow leader attachment are considered as the primary control factor, and both the gate position and the filling time become the secondary control factor. In the one-at-a-time approach, the last location to be filled in the mold cavity could be successfully moved to the extremities of the part, allowing a natural ventilation of entrapped air through the mold parting plane.

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, In-Soo;Kim, Yeung-Shik;Kim, Ki-Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.729-735
    • /
    • 2012
  • A LQG/LTR(linear quadratic Gaussian/loop transfer recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

Sliding Mode Control with Sliding Sector for Chattering Reduction (채터링 감소를 위한 슬라이딩 섹터를 갖은 슬라이딩 제어)

  • Han, Jong-Kil;Son, Yong-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.3
    • /
    • pp.168-173
    • /
    • 2007
  • Chattering phenomenon is still a large drawback of VSS. To overcome this problem, various approaches have been reported. A new notion of sliding sector has been proposed recently. In this paper, new methods of the nonlinear system control using the sliding sector theory with continued input function in the sector is proposed. This paper analyzes the stability, using Lyapunov function on the sliding sector. computer simulation for inverted pendulum results in elimination of the chattering phenomenon.

  • PDF

A FUNDAMENTAL STUDY ON THE NUMERICAL SIMULATION OF WAVE BREAKING PHENOMENON AROUND THE FORE-BODY OF SHIP (선수주위 쇄파현상의 수치시뮬레이션에 관한 기초연구)

  • Eom T.J.;Lee Y.-G.;Jeong K.-L.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.195-199
    • /
    • 2005
  • Wave breaking phenomenon near the fore body of a ship is numerically simulated. The ship advance with uniform velocity in calm water. For the simulation, incompressible Navier-Stokes equations and continuity equation are adopted as governing equations. The simulation is carried out in staggered variable mesh system with finite difference method. Marker and Cell(MAC) method and Marker-Density method are employed to track the free surface. Body boundary conditions are satisfied with the adoption of porosity method and no-slip condition on the hull surface. The ship model has a wedge type fore-body, and the computational domain is an appropriate region around the fore-body. The computation results are compared with some experimental results. Also the difference of the free surface tracking methods are discussed.

  • PDF

LQG/LTR Control of Hydraulic Positioning System with Dead-zone (사역대가 포함된 유압 위치 시스템의 LQG/LTR 제어)

  • Kim, Ki-Bum;Kim, Yeung-Shik;Kim, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.614-619
    • /
    • 2012
  • A LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) controller with an integrator is designed to control the electro-hydraulic positioning system. Without considering the nonlinearity in the dead-zone, computer simulations are performed and show good performances and tracking abilities with the feedback controller based on the linear system model. However, the performance of the closed loop hydraulic positioning system shows big steady-state error in real system because of the dead-zone. In this paper, the feedback controller with a nonlinear compensator is introduced to overcome the dead-zone phenomenon in hydraulic systems. The inverse dead-zone as a nonlinear compensator is used to cancel out the dead-zone phenomenon. Experimental tests are performed to verify the performance of the controller.

  • PDF

Precision Control of a Piezoelectric Actuator Based on an Inverse Hysteresis Model (역 히스테리시스 모델에 기초한 압전 구동기의 정밀제어)

  • Park, Seung-Man;Ahn, Hyun-Sik;Kim, Do-Hyun;Song, Joong-Ho;Choy, Ick;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2368-2370
    • /
    • 2000
  • In this paper, we proposed an inverse hysteresis model to cancel the nonlinear hysteresis phenomenon of a piezoelectric actuator and design a feedback control system based on the inverse hysteresis model. The piezoelectric actuator performs much better in open-loop response. However, the nonlinear hysteresis phenomenon should be linearized and the closed-loop control should be executed to get the required performance in the area, where high-speed and high-accuracy are required. Thus, it is shown by simulation that a good position tracking performance can be obtained for the repetitive desired position trajectory.

  • PDF