Car following model is a theory that examines changes of condition and interrelationship of acceleration deceleration. headway, velocity and so on closely based on the hypothesis that the Posterior vehicle always follows the preceding vehicle. Car following mode) which is one of the research fields of microscopic traffic flow was first introduced in 1950s and was in active progress in 1960s. However, due to the limitation of data gathering the research depression was prominent for quite a while and then soon was able to tune back on track with development in global positioning system using satellite and generalization of computer use. Recently, there has been many research studies using reception materials of global Positioning system(GPS). Introducing GPS technology to traffic has made real time tracking of a vehicle position possible. Position information is sequential in terms of time and simultaneous measurement of several vehicles in continuous driving is also practicable. Above research was focused on judging whether it is feasible to overcome the following model research by adopting the GPS reception device that was restrictively proceeded due to the limitation of data gathering. For practical judgment, we measured the accuracy and confidence level of the GPS reception devices material by carrying out a practical experiment. Car following model is also being applied in simulations of traffic flow analysis, but due to the difficulty of estimating parameters the basis of the above result. it is our goal to produce an accurate calibration of car following model's parameters that is suitable in this domestic actuality.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.12
/
pp.9-16
/
2016
Wireless sensor networks (WSN) are composed of sensor nodes and a base station. The sensor nodes deploy a non-accessible area, receive critical information, and transmit it to the base station. The information received is applied to real-time monitoring, distribution, medical service, etc.. Recently, the WSN was extended to mobile wireless sensor networks (MWSN). The MWSN has been applied to wild animal tracking, marine ecology, etc.. The important issues are mobility and energy consumption in MWSN. Because of the limited energy of the sensor nodes, the energy consumption for data transmission affects the lifetime of the network. Therefore, efficient data transmission from the sensor nodes to the base station is necessary for sensing data. This paper, proposes an energy consumption model using two-tier clustering in mobile sensor networks (TTCM). This method divides the entire network into two layers. The mobility problem was considered, whole energy consumption was decreased and clustering methods of recent researches were analyzed for the proposed energy consumption model. Through analysis and simulation, the proposed TTCM was found to be better than the previous clustering method in mobile sensor networks at point of the network energy efficiency.
Stand level survival prediction model was developed that incorporated the incidence of fusiform rust(Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme) and allowed the transition of trees from an uninfected stage to an infected stage. The influence of hardwood interspecific competition on the survival of unthinned planted stands of loblolly pine (Pinus taeda L.) was analyzed by using of information from twelve years of tracking a set of permanent plots representing a broad range of plantation parameters. Significant interaction effects between site index and hardwood basal area per acre were revealed in the survival model. Survival of the planted pines decreased with increasing density of hardwood trees per acre and site index as the productivity rating of the forest land. The effects of hardwood trees interspecific competition on loblolly pine tended to show a negative effect on predicted future number of planted pine trees.
Myung Ji Kim; Su Hee Cho; Yongbo Seo; Sang-Dae Kim; Hae-Chul Park; Bum-Joon Kim
Journal of Korean Neurosurgical Society
/
v.67
no.5
/
pp.510-520
/
2024
Objective : Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The treatment of PD aims to alleviate motor symptoms by replacing the reduced endogenous dopamine. Currently, there are no disease-modifying agents for the treatment of PD. Zebrafish (Danio rerio) have emerged as an effective tool for new drug discovery and screening in the age of translational research. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is known to cause a similar loss of dopaminergic neurons in the human midbrain, with corresponding Parkinsonian symptoms. L-type calcium channels (LTCCs) have been implicated in the generation of mitochondrial oxidative stress, which underlies the pathogenesis of PD. Therefore, we investigated the neuro-restorative effect of LTCC inhibition in an MPTP-induced zebrafish PD model and suggested a possible drug candidate that might modify the progression of PD. Methods : All experiments were conducted using a line of transgenic zebrafish, Tg(dat:EGFP), in which green fluorescent protein (GFP) is expressed in dopaminergic neurons. The experimental groups were exposed to 500 μmol MPTP from 1 to 3 days post fertilization (dpf). The drug candidates : levodopa 1 mmol, nifedipine 10 μmol, nimodipine 3.5 μmol, diethylstilbestrol 0.3 μmol, luteolin 100 μmol, and calcitriol 0.25 μmol were exposed from 3 to 5 dpf. Locomotor activity was assessed by automated tracking and dopaminergic neurons were visualized in vivo by confocal microscopy. Results : Levodopa, nimodipine, diethylstilbestrol, and calcitriol had significant positive effects on the restoration of motor behavior, which was damaged by MPTP. Nimodipine and calcitriol have significant positive effects on the restoration of dopaminergic neurons, which were reduced by MPTP. Through locomotor analysis and dopaminergic neuron quantification, we identified the neuro-restorative effects of nimodipine and calcitriol in zebrafish MPTP-induced PD model. Conclusion : The present study identified the neuro-restorative effects of nimodipine and calcitriol in an MPTP-induced zebrafish model of PD. They restored dopaminergic neurons which were damaged due to the effects of MPTP and normalized the locomotor activity. LTCCs have potential pathological roles in neurodevelopmental and neurodegenerative disorders. Zebrafish are highly amenable to high-throughput drug screening and might, therefore, be a useful tool to work towards the identification of disease-modifying treatment for PD. Further studies including zebrafish genetic models to elucidate the mechanism of action of the disease-modifying candidate by investigating Ca2+ influx and mitochondrial function in dopaminergic neurons, are needed to reveal the pathogenesis of PD and develop disease-modifying treatments for PD.
With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.
Kim, Min;Lee, Myung-Jun;Lee, Seong-Hyeon;Park, Sung-ho;Kong, Young-Joo;Woo, Seon-Keol;Kim, Hong-Rak;Kim, Kyung-Tae
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.29
no.3
/
pp.233-240
/
2018
Radar cross section (RCS) analysis of chaff clouds is essential for the accurate detection and tracking of missile targets using radar. For this purpose, we compare the performance of two existing methods of predicting RCS of chaff clouds. One method involves summing up the RCS values of individual chaffs in a cloud, while the other method predicts the RCS values using aerodynamic models based on the probability density function. In order to compare and analyze the two techniques more precisely, the RCS of a single chaff computer-aided design model consisting of a half wavelength dipole was calculated using the commercial electromagnetic numerical analysis software, FEKO 7.0, to estimate the RCS values of chaff clouds via simulation. Thus, we verified that our method using the probability density distribution model is capable of analyzing the RCS of chaff clouds more efficiently.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.3
/
pp.584-593
/
2018
The highly efficient operation of induction motors has been studied in the past years. Among the many attempts made to obtain highly efficient operation, Maximum Torque Per Amp (MTPA) controls in induction motor drives were proposed. This method enables induction motor drives to operate very efficiently since it achieves the desired torque with the minimal stator current. This is because the alternate qd induction motor model (AQDM) is a highly accurate mathematical model to represent the dynamic characteristics of induction motors. However, it has been shown that the variation of the rotor resistance degrades the performance of the MTPA control significantly, thus leading to its failure to satisfy the maximum torque per amp condition. To take into consideration the mismatch between the actual value of the rotor resistance and its parameter value in the design of the control strategy, an adaptive MTPA control was proposed. In this work, this adaptive MTPA control is investigated in order to achieve the desired torque with the minimum stator current at multiple operating points. The experimental study showed that (i) the desired torque was accurately achieved even though there was a deviation of the order of 5% from the commanded torque value at a torque reference of 25 Nm (tracking performance), and (ii) the minimum stator current for the desired torque (maximum torque per amp condition) was consistently satisfied at multiple operating points, as the rotor temperature increased.
In this study, we suggest a system to build the monitoring model for compressed natural gas (CNG) stations, operated in only non-stationary modes, and perform the real-time monitoring and the abnormality diagnosis using principal component analysis (PCA) that is suitable for processing large amounts of multi-dimensional data among multivariate statistical analysis methods. We build the model by the calculation of the new characteristic variables, called as the major components, finding the factors representing the trend of process operation, or a combination of variables among 7 pressure sensor data and 5 temperature sensor data collected from a CNG station at every second. The real-time monitoring is performed reflecting the data of process operation measured in real-time against the built model. As a result of conducting the test of monitoring in order to improve the accuracy of the system and verification, all data in the normal operation were distinguished as normal. The cause of abnormality could be refined, when abnormality was detected successfully, by tracking the variables out of the score plot.
Journal of the Korean Society of Marine Environment & Safety
/
v.24
no.1
/
pp.119-125
/
2018
The particle based computational fluid dynamics (CFD) method, which follow Lagrangian approach for fluid dynamics, fluid particle behavior by tracking all particle calculation physical quantities of each particle. According to basic concept of particle based CFD method, it is difficult to satisfy continuum theory and measure influences from neighboring particle. Article number density and weight function were used to solve aforementioned issue. Difficulties continuum mean simulate non-continuum particles such as solid including granular and sand. In this regard, the particle based CFD method modified solid particle problems by replacing viscous and surface tension forces friction and drag forces. In this paper, particle interaction model for solid particle friction model implemented to simulate solid particle problems. The broken dam problem, which is common to verify particle based CFD method, used fluid or solid particles. The angle of repose was observed in the simulation results the solid particle not fluid particle.
In this paper, we introduce a technique to retarget human motion data to the humanoid body in a constrained environment. We assume that the given motion data includes detailed interactions such as holding the object by hand or avoiding obstacles. In addition, we assume that the humanoid joint structure is different from the human joint structure, and the shape of the surrounding environment is different from that at the time of the original motion. Under such a condition, it is also difficult to preserve the context of the interaction shown in the original motion data, if the retargeting technique that considers only the change of the body shape. Our approach is to separate the problem into two smaller problems and solve them independently. One is to retarget motion data to a new skeleton, and the other is to preserve the context of interactions. We first retarget the given human motion data to the target humanoid body ignoring the interaction with the environment. Then, we precisely deform the shape of the environmental model to match with the humanoid motion so that the original interaction is reproduced. Finally, we set spatial constraints between the humanoid body and the environmental model, and restore the environmental model to the original shape. To demonstrate the usefulness of our method, we conducted an experiment by using the Boston Dynamic's Atlas robot. We expected that out method can help the humanoid motion tracking problem in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.