• Title/Summary/Keyword: tracking errors

Search Result 541, Processing Time 0.024 seconds

Subjective Evaluation on Perceptual Tracking Errors from Modeling Errors in Model-Based Tracking

  • Rhee, Eun Joo;Park, Jungsik;Seo, Byung-Kuk;Park, Jong-Il
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.407-412
    • /
    • 2015
  • In model-based tracking, an accurate 3D model of a target object or scene is mostly assumed to be known or given in advance, but the accuracy of the model should be guaranteed for accurate pose estimation. In many application domains, on the other hand, end users are not highly distracted by tracking errors from certain levels of modeling errors. In this paper, we examine perceptual tracking errors, which are predominantly caused by modeling errors, on subjective evaluation and compare them to computational tracking errors. We also discuss the tolerance of modeling errors by analyzing their permissible ranges.

Robot Path Planning Method for Tracking Error Reduction (로봇의 추적오차 감소를 위한 궤적계획방법)

  • Kim, Dong-Jun;Kim, Gap-Il;Park, Yong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.143-148
    • /
    • 2001
  • A lot of robot trajectory tracking methods are proposed to enhance the tracking error, but irregular tracking errors are always accompanied and very hard to reduce it. Up to now, these irregular tracking errors are reduced by introducing more complicated control algorithms. But, it is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance instead of using more complicated control algorithms. By the characteristics of the robot, big tracking errors of the end-effector are generated mostly due to the fast moving of joint. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

A Study on the Path Constraint Error Reducing Trajectory Planning (Path Constraint한 궤적 계획법의 위치 오차 감소에 관한 연구)

  • Hwang, Seung-Jae;Park, Se-Woong;Kim, Dong-Jun;Kim, Kab-Il;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.843-845
    • /
    • 1995
  • There are a variety of trajectory and control algorithms available for robot trajectory tracking. Before using the enhanced trajectory and control algorithms to reduce the tracking error, we introduce the new method which reduces the tracking error by clipping the joint velocity. A lot of robot trajectory tracking methods are proposed to enhance the robot tracking, but irregular tracking errors are always accompanied. Up to now, these irregular tracking errors are gradually but uniformly reduced by introducing more complicated control algorithms. It is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance. By heuristic method, big tracking errors in these irregular ones are assumed mostly due to the fast moving of joint with respect to the same tracking and control method. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Multipath Error Mitigation using Differenced Autocorrelation Function (자기 상관 차분 함수를 이용한 다중 경로 오차 감쇄 기법)

  • 최일흥;이상정
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.59-67
    • /
    • 2003
  • Multipath is an inevitable error source in radio navigation system such as GPS, it causes signal tracking errors such as carrier tracking errors, code tracking errors. Since code tracking error is a dominant error in absolute positioning, this paper focuses on the improvement of code tracking performance. This paper proposes a method that detects the change of autocorrelation function's slope and mitigates the multipath error. Also, this paper shows the performance evaluation results by post-processing the digitized RF samples.

The study on target tracking filter using interacting multiple model for tracking maneuvering target (기동표적 추적을 위한 상호작용다수모델 추적필터에 관한 연구)

  • Kim, Seung-Woo
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.137-144
    • /
    • 2007
  • Fire Control System(FCS) errors can be classified as hardware errors and software errors, and one of the software errors is from target tracking filter which estimates target's location, velocity, acceleration, and so on. It affects function of ballistic calculation equipment significantly. For gun to form predicted hitting point accurately and enhance hitting rate, we need status information of target's future location. Target tracking filter algorithms consist of Single Singer Model, Fixed Gain filter algorithm, IMM, PBIMM and so on. This paper will design IMM tracking filer, which is going to be! applied to domestic warship. Target tracking filter using CV model, Song model and CRT model for IMM tracking filter is made, and tracking ability is analyzed through Monte-Carlo simulation.

  • PDF

Tolerance Analysis on 3-D Object Modeling Errors in Model-Based Camera Tracking (모델 기반 카메라 추적에서 3차원 객체 모델링의 허용 오차 범위 분석)

  • Rhee, Eun Joo;Seo, Byung-Kuk;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Accuracy of the 3-D model is essential in model-based camera tracking. However, 3-D object modeling requires dedicated and complicated procedures for precise modeling without any errors. Even if a 3-D model contains a certain level of errors, on the other hand, the tracking errors cause by the modeling errors can be different from its perceptual errors; thus, it is an important aspect that the camera tracking can be successful without precise 3-D modeling if the modeling errors are within the user's permissible range. In this paper, we analyze the tolerance of 3-D object modeling errors by comparing computational matching errors with perceptual matching errors through user evaluations, and also discuss permissible ranges of 3-D object modeling errors.

Analysis of the monopulse radar tracking errors according to the JSR of cross-eye jammer and radar reflection signals (크로스아이 재머와 레이다 반사 신호 비(JSR)에 따른 모노펄스 레이다 추적 오차 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.8
    • /
    • pp.23-28
    • /
    • 2021
  • In this paper, we analyze the tracking errors of monopulse radar according to the JSR of retrodirective cross-eye and radar skin return signals. The cross-eye jammer gain(Gc) is used to calculate the radar tracking errors, and the relationship between the jammer gain and the JSR is represented mathematically. We analyze the radar tracking errors by varying the tracking angle and JSR. Analysis results of the phase difference(ϕ) and amplitude ratio(a) between the two jammer signals and the changing JSR show that the closer the phase difference of the two jammer signals is to 180, the greater the tracking error and it shows that if the JSR is above 20dB, the tracking errors no longer increase. This work presents an effective utilization of retrodirective cross-eye jammers through various tracking error analyses based on the JSR, tracking angles, two-jammer phase differences and amplitude ratios of two-jammer signals.

Analysis of Heliostat Sun Tracking Error due to the Mirror Installation and Drive Mechanism Induced Errors (Heliostat 반사거울 설치 및 구동기구 유발 오차에 의한 태양추적오차의 해석)

  • Park, Young-Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.1-11
    • /
    • 2009
  • Heliostat sun tracking accuracy could be the most important requirement in solar thermal power plant, since it determines the overall efficiency of power plant. This study presents the effect of geometrical errors on the heliostat sun tracking performance. The geometrical errors considered here are the mirror canting error, encoder reference error, heliostat position error. pivot offset and tilt error, gear backlash and mass unbalanced effect error. We first investigate the effect of each individual geometrical error on the sun tracking accuracy. Then, the sun tracking error caused by the combination of individual geometrical error is computed and analyzed. The results obtained using the solar ray tracing technique shows that the sun tracking error due to the geometrical error is varying almost randomly. It also shows that the mirror canting error is the most significant error source, while the encoder reference error and gear backlash are second and the third dominant source of errors.

The Analysis of Trajectory Tracking Error Caused by the Tolerance of the Design Parameters of a Parallel Kinematic Manipulator (병렬로봇의 설계 공차가 궤적 정밀도에 미치는 영향 분석)

  • Park, Chanhun;Park, DongIl;Kim, Doohyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.248-255
    • /
    • 2016
  • Machining error makes the uncertainty of dimensional accuracy of the kinematic structure of a parallel robot system, which makes the uncertainty of kinematic accuracy of the end-effector of the parallel robot system. In this paper, the tendency of trajectory tracking error caused by the tolerance of design parameters of the parallel robot is analyzed. For this purpose, all the position errors are analyzed as the manipulator is moved on the target trajectory. X, Y, Z components of the trajectory errors are analyzed respectively, as well as resultant errors, which give the designer of the manipulator the intuitive and deep understanding on the effects of each design parameter to the trajectory tracking errors caused by the uncertainty of dimensional accuracy. The research results shows which design parameters are critically sensitive to the trajectory tracking error and the tendency of the trajectory tracking error caused by them.

The development of generating reference trajectory algorithm for robot manipulator (로봇 제어를 위한 변형 기준 경로 발생 알고리즘의 개발)

  • 민경원;이종수;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.912-915
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researches to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used the concept of sliding mode theory and fuzzy system to reduce chattering in control input. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In this simulation, proposed method showed better trajectory tracking performance compared with the CTM.

  • PDF