DOI QR코드

DOI QR Code

Tolerance Analysis on 3-D Object Modeling Errors in Model-Based Camera Tracking

모델 기반 카메라 추적에서 3차원 객체 모델링의 허용 오차 범위 분석

  • Rhee, Eun Joo (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Seo, Byung-Kuk (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Park, Jong-Il (Department of Electronics and Computer Engineering, Hanyang University)
  • 이은주 (한양대학교 전자컴퓨터통신공학과) ;
  • 서병국 (한양대학교 전자컴퓨터통신공학과) ;
  • 박종일 (한양대학교 전자컴퓨터통신공학과)
  • Received : 2012.09.10
  • Accepted : 2012.12.31
  • Published : 2013.01.30

Abstract

Accuracy of the 3-D model is essential in model-based camera tracking. However, 3-D object modeling requires dedicated and complicated procedures for precise modeling without any errors. Even if a 3-D model contains a certain level of errors, on the other hand, the tracking errors cause by the modeling errors can be different from its perceptual errors; thus, it is an important aspect that the camera tracking can be successful without precise 3-D modeling if the modeling errors are within the user's permissible range. In this paper, we analyze the tolerance of 3-D object modeling errors by comparing computational matching errors with perceptual matching errors through user evaluations, and also discuss permissible ranges of 3-D object modeling errors.

모델 기반 카메라 추적에서 추적을 위해 사용되는 3차원 객체 모델의 정확도는 매우 중요하다. 하지만 3차원 객체의 실측 모델링은 일반적으로 정교한 작업을 요구할 뿐만 아니라, 오차 없이 모델링하기가 매우 어렵다. 반면에 오차를 포함하고 있는 3차원 객체 모델을 이용하더라도 모델링 오차에 의해서 계산되는 추적 오차와 실제 사용자의 육안으로 느끼는 추적 오차는 다를 수 있다. 이는 처리비용이 높은 정밀한 모델링 과정을 요구하지 않더라도 사용자가 느끼는 오차 허용 범위 내에서 추적을 위한 객체 모델링을 효과적으로 수행할 수 있기에 중요한 측면이 된다. 따라서 본 논문에서는 모델 기반 카메라 추적에서 모델링 오차에 따른 실제 정합 오차와 사용자의 육안으로 인지되는 정합 오차를 사용자 평가를 통해 비교 분석하고, 3차원 객체 모델링의 허용 오차 범위에 대해 논의한다.

Keywords

References

  1. R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision," 2nd Ed., Cambridge University Press, 2004.
  2. H. Kato and M. Billinghurst, "Marker tracking and HMD calibration for a video-based augmented reality conferencing system," In Proc. International Workshop on Augmented Reality (IWAR), pp. 85-94, 1999.
  3. D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision (IJCV), vol. 60, no. 2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  4. H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, "Speeded-Up Robust Features (SURF)," Computer Vision and Image Understanding (CVIU), vol. 110, no. 3, pp. 346-359, 2008. https://doi.org/10.1016/j.cviu.2007.09.014
  5. T. Drummond and R. Cipolla, "Real-time tracking of complex structures with on-line camera calibration," In Proc. British Machine Vision Conference (BMVC), pp. 574-583, 1999.
  6. M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, and R. Koch, "Visual modeling with a hand-held camera," International Journal of Computer Vision (IJCV), vol. 59, no. 3, pp. 207-232, 2004. https://doi.org/10.1023/B:VISI.0000025798.50602.3a
  7. M. Brown, T. Drummond, and R. Cipolla, "3D model acquisition by tracking 2D wireframes," In Proc. British Machine Vision Conference (BMVC), pp. 574-583, 2000.
  8. P. E. Debevec, C. J. Taylor, and J. Malik, "Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach," In Proc. ACM SIGGRAPH Annual Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), pp. 11-20, 1996.
  9. N. Snavely, S. M. Seitz, and R. Szeliski, "Modeling the world from internet photo collections," International Journal of Computer Vision (IJCV), vol. 80, no. 2, pp. 189-210, 2008. https://doi.org/10.1007/s11263-007-0107-3
  10. A. Y. Mulayim, U. Yilmaz, and V. Atalay, "Silhouette-based 3-D model reconstruction from multiple images," IEEE Transactions on Systems, Man, and Cybernetics Part B, Cybernetics, vol. 33, no. 4, pp. 582-591, 2003. https://doi.org/10.1109/TSMCB.2003.814303
  11. P. Bunnun and W. Mayol-Cuevas, "OutlinAR: An assisted interactive model building system with reduced computational effort," In Proc. International Symposium on Mixed and Augmented Reality (ISMAR), pp. 61-64, 2008.
  12. A. Hengel, A. Dick, T. Thormahlem, B. Ward, and P. H. S. Torr, "VideoTrace: Rapid interactive scene modelling from video," ACM Transactions on Graphics (ToG), vol. 26, no. 3, 2007.
  13. A. Hengel, R. Hill, B. Ward, and A. Dick, "In situ image-based modeling," In Proc. International Symposium on Mixed and Augmented Reality (ISMAR), pp. 107-110, 2009.
  14. G. Klein and D. Murray, "Parallel tracking and mapping for small AR workspaces," In Proc. IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR), 2007.
  15. W. Lee, K. Kim, and W. Woo, "Mobile Phone-based 3D Modeling Framework for Instant Interaction," In Proc. International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1755-1762, 2009.
  16. H. Park, J. Oh, B.-K. Seo, and J.-I. Park, "Automatic confidence adjustment of visual cues in model-based camera tracking," Computer Animation and Virtual Worlds (CAVW), vol. 21, no. 2, pp. 69-79, 2010. https://doi.org/10.1002/cav.321