• Title/Summary/Keyword: toxic material

Search Result 473, Processing Time 0.024 seconds

A study on importance of MSDS education (MSDS 교육의 중요성에 관한 연구)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.209-215
    • /
    • 2015
  • Following the semiconductor industry's growing, various types of toxic gases and caustic chemicals, HF(Hydrofluoric acid), HCI (Hydochloric acid), $H_2O_2$ (Hydrogen peroxide), $H_2SO_4$ (Sulfuric acid), and Piranha, were using on the semiconductor manufacturing process. Therefore many gas leakage accidents that produce huge losses of lives were caused by the processes. This research deeply considers two basic solutions that the necessity of MSDS education on university for reducing damage of lives and protecting life from chemical leak accidents such as a HF accident in Gumi, Korea and the use of GHS, REACH and the comprehension of propriety about using MSDS for keeping safety from conflagrations by released poison chemical materials.

A study on cytocompatibility of ion beam-irradiated chitosan sponges (이온 빔 조사 처리된 키토산 스펀지의 세포적합도에 관한 연구)

  • Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.2
    • /
    • pp.281-291
    • /
    • 1998
  • Chitosan is a biodegradable and non-toxic material with a molecular weight of 800-1,500Kd which can be obtained in various forms with extraordinary chemical structures and biological characteristics of which enables it to be used in many fields as a biomaterial. Ion irradiation is a useful tool to modify chemical structures and physical properties of high molecular weight polymers. The basic hypothesis of this study is that when surface properties of chitosan in a sponge form are modified with ion beam-irradiation and cell adhesion properties of chitosan would improve and thereby increase the regenerative ability of the damaged bone. The purpose of this study was to illuminate the changes in the cytocompatibility of chitosan sponges after ion beam-irradiation as a preliminary research. Argon($Ar^+$) ions were irradiated at doses of $5{\times}10^{13}$, $5{\times}10^{15}$ at 35 keV on surfaces of each sponges. Cell adhesion and activity of alkaline phosphatases were studied using rat fetal osteoblasts. The results of this study show hat ion beam-irradiation at optimal doses($5{\times}10^^{13}\;Ar^+\;ion/cm^2$) is a useful method to improve cytocompatibility without sacrificing cell viability and any changing cell phenotypes. These results show that ion beam-irradiated chitosan sponges can be further applied as carriers in tissue engineering and as bone filling materials.

  • PDF

A literatual study on the causes and treatments of the melasma. (기미에 關한 文獻的 考察)

  • Shin, Yun-sang;Roh, Sek-seon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.11 no.1
    • /
    • pp.82-98
    • /
    • 1998
  • In the literatual studies on the causes and treatments of the melasma, the results were as follows. 1. Melasma is the blackish patch on the face, is belong to the cartegory of the 'Myunjin(面塵)', 'Myunganzung(면간증)', 'Jakban(雀斑)' etc. in Oriental medicine 2. Melasma is deeply associated with Yangming channel in Meridian, with the spleen, stomach, heart and kidney in Viscera. 3. The pathogenic factors of Melasma is divided five parts. One is insufficient of Yangming's energy in Neijing(內經). Two is incoordination between vital energy and blood caused by wind-evil and phlegm-retention syndrome. Three is anxiety impairing the spleen. Four is kidney-asthenia and fire-hyperactivity. Five is heat-evil. 4. In the treatments of Melasma, Sthenia-syndrome was used cooling blood and activating blood circulation, or dispelling wind-evil and promoting meridian, or expelling fire-evil and removing toxic material etc. Asthenia-syndrome was used invigorating the liver and kidney, or nourishing yin and keeping fire downwards etc. 5. Melasma is concerned with sun-light, is mostly seen in female. 6. In the prescription of Melasma, it was used Jujesamultang(酒製四物湯加減), Okyong -san(玉容散), Chunghwasungitang(沖和順氣湯), Okyongseosisan(玉容西施散), Yukmiji-hwanghwan(六味地黃丸) etc.

  • PDF

High-rate Removal of Algae by Using of Filtration System with Coagulant Addition (응집과 여과를 이용한 조류의 초고속 제어에 관한 연구)

  • Yun, Sang Leen;Kim, Dong Ha;Rhee, Young Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.221-228
    • /
    • 2002
  • Abundant growth of algae in raw water sources caused by eutrophication brings about significant side effects on water supply, such as taste and order problem, oxygen depletion, toxic material secretion, and filter clogging problem in water treatment process, etc. The purpose of this research is to remove the algae and phosphorus compounds in the Pal-dang reservoir promptly by using the upflow filtration system with coagulant addition. The filter tower consisted of sand media and sieve filter with air back-washing process. By using coagulation and filtration with $132{\mu}m$ pore size filter, about 55% and 70% of algae and phosphorus compounds were removed respectively. The experimental conditions were as follows; head loss of 0.2m, linear velocity of 200m/day, and filtration flux of 1000($L/m^2/day$). In the case of filtration with cartridge type filter of $25{\mu}m$ pore size, the filtration flux was about 7800 LMH, and the removal ratios of COD, SS, T-P, and Chlo-a. were 61%, 99%, 54%, and 98%, respectively. However, high pressure air back-washing process with should be required for the maintenance of such high filtration flux.

A Short Review of Light Barrier Materials for Food and Beverage Packaging

  • Kwon, Seongyoung;Orsuwan, Aungkana;Bumbudsanpharoke, Nattinee;Yoon, ChanSuk;Choi, Jungwook;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.3
    • /
    • pp.141-148
    • /
    • 2018
  • Photo-oxidation is one of the main causes of food deterioration of great variety of foods, such as dairy products, nuts, meat products, and wine. It causes a loss of both nutritional value and sensorial quality of products and may even leads to the formation of toxic compounds. Active packaging for food and beverages has been investigated and developed with embedding light absorbers or blocking materials into the plastics. In recent years, several novel light barrier materials have been proposed as an alternative option for different applications. This article reviews the up-to-date technology in light absorber and blocking material with special emphasis on chemical compound and mechanism. Inorganic, organic, hybrid organic-inorganic, and natural light absorbers were scoped. The challenges and future perspectives of light barrier materials are also discussed.

Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region

  • Sayyed, M.I.;Akman, F.;Kacal, M.R.;Kumar, A.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.860-866
    • /
    • 2019
  • The lead element or its salts are good radiation shielding materials. However, their toxic effects are high. Due to less toxicity of bismuth salts, the radiation shielding properties of the bismuth salts have been investigated and compared to that of lead salts to establish them as a better alternative to radiation shielding material to the lead element or its salts. The transmission geometry was utilized to measure the mass attenuation coefficient (${\mu}/{\rho}$) of different salts containing lead and bismuth using a high-resolution HPGe detector and different energies (between 81 and 1333 keV) emitted from point sources of $^{133}Ba$, $^{57}Co$, $^{22}Na$, $^{54}Mn$, $^{137}Cs$, and $^{60}Co$. The experimental ${\mu}/{\rho}$ results are compared with the theoretical values obtained through WinXCOM program. The theoretical calculations are in good agreement with their experimental ones. The radiation protection efficiencies, mean free paths, effective atomic numbers and electron densities for the present compounds were determined. The bismuth fluoride ($BiF_3$) is found to have maximum radiation protection efficiency among the selected salts. The results showed that present salts are more effective for reducing the intensity of gamma photons at low energy region.

Antifouling technology and sea trial verification according to surface treatment (표면 처리를 통한 친환경 방오 기술 및 실해역 평가 연구)

  • Han, Deok-Hyun;Koh, Hyeok-Jun;Jung, Hang-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.425-432
    • /
    • 2022
  • Antifouling paints that inhibit the attachment and contamination of marine organisms mainly use TBT compounds, but because of their toxic components, they cause ecosystem disturbance and environmental destruction problems, so It is necessary to research eco-friendly antifouling paints that are easy to maintain and effective antifouling technologies. In this study, physical surface treatment of silane coating and chemical antifouling technology were applied to the metal surface to secure the stability of the surface of the marine structure and inhibit the attachment and growth of marine organisms. Adhesion of marine organisms was evaluated according to the coating conditions through surface evaluation of the charged material for 15 months in the waters of the west coast of Korea. In accordance with ASTM D6990-05, antifouling properties fouling rates (FR) and physical degradation rates(PDR) were evaluated through visual inspection of the evaluation specimens. As a result of evaluating the antifouling performance of the coated surface, it was confirmed that the antifouling performance was maintained at the 50% level even after 15 months in the sample subjected to physical processing and silane coating.

Development of a MEMS-based H2S Sensor with a High Detection Performance and Fast Response Time

  • Dong Geon Jung;Junyeop Lee;Dong Hyuk Jung;Won Oh Lee;Byeong Seo Park;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.207-212
    • /
    • 2023
  • H2S is a toxic and harmful gas, even at concentrations as low as hundreds of parts per million; thus, developing an H2S sensor with excellent performance in terms of high response, good selectivity, and fast response time is important. In this study, an H2S sensor with a high response and fast response time, consisting of a sensing material (SnO2), an electrode, a temperature sensor, and a micro-heater, was developed using micro-electro-mechanical system technology. The developed H2S sensor with a micro-heater (circular type) has excellent H2S detection performance at low H2S concentrations (0-10 ppm), with quick response time (<16 s) and recovery time (<65 s). Therefore, we expect that the developed H2S sensor will be considered a promising candidate for protecting workers and the general population and for responding to tightened regulations.

Cytotoxicity and biocompatibility of high mol% yttria containing zirconia

  • Gulsan Ara Sathi Kazi;Ryo Yamagiwa
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.52.1-52.11
    • /
    • 2020
  • Objectives: Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated. Materials and Methods: Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis. Results: The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions. Conclusions: The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.

The biomechanical and biological effect of supercooling on cortical bone allograft

  • MuYoung Kim ;Hun-Young Yoon
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.79.1-79.16
    • /
    • 2023
  • Background: The need for a storage method capable of preserving the intrinsic properties of bones without using toxic substances has always been raised. Supercooling is a relatively recently introduced preservation method that meets this need. Supercooling refers to the phenomenon of liquid in which the temperature drops below its freezing point without solidifying or crystallizing. Objectives: The purpose of this study was to identify the preservation efficiency and applicability of the supercooling technique as a cortical bone allograft storage modality. Methods: The biomechanical effects of various storage methods, including deep freezing, cryopreservation, lyophilization, glycerol preservation, and supercooling, were evaluated with the three-point banding test, axial compression test, and electron microscopy. Additionally, cortical bone allografts were applied to the radial bone defect in New Zealand White rabbits to determine the biological effects. The degree of bone union was assessed with postoperative clinical signs, radiography, micro-computed tomography, and biomechanical analysis. Results: The biomechanical properties of cortical bone grafts preserved using glycerol and supercooling method were found to be comparable to those of normal bone while also significantly stronger than deep-frozen, cryopreserved, and lyophilized bone grafts. Preclinical research performed in rabbit radial defect models revealed that supercooled and glycerol-preserved bone allografts exhibited significantly better bone union than other groups. Conclusions: Considering the biomechanical and biological superiority, the supercooling technique could be one of the optimal preservation methods for cortical bone allografts. This study will form the basis for a novel application of supercooling as a bone material preservation technique.