Browse > Article
http://dx.doi.org/10.20909/kopast.2018.24.3.141

A Short Review of Light Barrier Materials for Food and Beverage Packaging  

Kwon, Seongyoung (Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University)
Orsuwan, Aungkana (Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University)
Bumbudsanpharoke, Nattinee (Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University)
Yoon, ChanSuk (Agency for Korea National Food Cluster)
Choi, Jungwook (Agency for Korea National Food Cluster)
Ko, Seonghyuk (Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University)
Publication Information
KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY / v.24, no.3, 2018 , pp. 141-148 More about this Journal
Abstract
Photo-oxidation is one of the main causes of food deterioration of great variety of foods, such as dairy products, nuts, meat products, and wine. It causes a loss of both nutritional value and sensorial quality of products and may even leads to the formation of toxic compounds. Active packaging for food and beverages has been investigated and developed with embedding light absorbers or blocking materials into the plastics. In recent years, several novel light barrier materials have been proposed as an alternative option for different applications. This article reviews the up-to-date technology in light absorber and blocking material with special emphasis on chemical compound and mechanism. Inorganic, organic, hybrid organic-inorganic, and natural light absorbers were scoped. The challenges and future perspectives of light barrier materials are also discussed.
Keywords
Active packaging; Light absorber; Light sensitive food and beverage; Photo-oxidation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nakayama, N. and Hayashi, T. 2007. Preparation and characterization of $TiO_2$ and polymer nanocomposite films with high refractive index. Journal of Applied Polymer Science 105: 3662-3672.   DOI
2 Wang, Z. Y., Lu, Z., Mahoney, C., Yan, J. J., Ferebee, R., Luo, D. L., Matyjaszewski, K., and Bockstaller, M. R. 2017. Transparent and high refractive index thermoplastic polymer glasses using evaporative ligand exchange of hybrid particle fillers. ACS Applied Materials & Interfaces 9: 7515-7522.   DOI
3 Cox, A., DeWeerd, A. J., and Linden, J. 2002. An experiment to measure Mie and Rayleigh total scattering cross sections. American Journal of Physics 70: 620-625.   DOI
4 Dransfield, G. 2000. Inorganic sunscreens. Radiation Protection Dosimetry 91: 271-273.   DOI
5 Hashimoto, A. and Sakamoto, K. 2011. UV-blocking film for food storage using titanium dioxide. Food Science and Technology Research 17: 199-202.   DOI
6 Ren, J. L., Wang, S. Y., Gao, C. D., Chen, X. F., Li, W. Y., and Peng, F. 2015. $TiO_2$-containing PVA/xylan composite films with enhanced mechanical properties, high hydrophobicity and UV shielding performance. Cellulose 22: 593-602.   DOI
7 Coltro, L., Padula, M., Saron, E. S., Borghetti, J., and Buratin, A. E. P. 2003. Evaluation of a UV absorber added to PET bottles for edible oil packaging. Packaging Technology and Science 16: 15-20.   DOI
8 Pascall, M. A., Harte, B. R., Giacin, J. R., and Gray, J. I. 1995. Decreasing lipid oxidation in soybean oil by a UV absorber in the packaging material. Journal of Food Science 60: 1116-1119.   DOI
9 Yang, F., Li, X. L., Meng, D. L., and Yang, Y. L. 2017. Determination of ultraviolet absorbers and light stabilizers in food packaging bags by magnetic solid phase extraction followed by high-performance liquid chromatography. Food Analytical Methods 10: 3247-3254.   DOI
10 Duncan, S. and Hannah, S. 2012. Light-protective packaging materials for foods and beverages. In: Yam, K. L. and Lee, D. S. (Eds.), Emerging Food Packaging Technologies: Principles and Practice. p. 303.
11 Psomiadou, E. and Tsimidou, M. 2002. Stability of virgin olive oil. 2. Photo-oxidation studies. Journal of Agricultural and Food Chemistry 50: 722-727.   DOI
12 Cardoso, D. R., Libardi, S. H. and Skibsted, L. H. 2012. Riboflavin as a photosensitizer. Effects on human health and food quality. Food & Function 3: 487-502.   DOI
13 Gargouri, B., Zribi, A., and Bouaziz, M. 2015. Effect of containers on the quality of Chemlali olive oil during storage. Journal of Food Science and Technology 52: 1948-1959.   DOI
14 Ludin, N. A., Mahmoud, A. M. A. A., Mohamad, A. B., Kadhum, A. A. H., Sopian, K., and Karim, N. S. A. 2014. Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable & Sustainable Energy Reviews 31: 386-396.   DOI
15 Kiritsakis, A. and Dugan, L. R. 1985. Studies in photooxidation of olive oil. Journal of the American Oil Chemists Society 62: 892-896.   DOI
16 Hoffmann, M. R., Martin, S. T., Choi, W. Y., and Bahnemann, D. W. 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews 95: 69-96.   DOI
17 Lizundia, E., Ruiz-Rubio, L., Vilas, J. L., and Leon, L. M. 2016. Poly (L-lactide)/ZnO nanocomposites as efficient UVshielding coatings for packaging applications. Journal of Applied Polymer Science 133: 424261-424267.
18 Coughlin, G. and Schambony, S. 2008. New UV absorber for PET packaging: Better protection with less discoloration. Journal of Plastic Film & Sheeting 24: 227-238.   DOI
19 Dalsgaard, T. K., Sorensen, J., Bakman, M., Vognsen, L., Nebel, C., Albrechtsen, R., and Nielsen, J. H. 2010. Light-induced protein and lipid oxidation in cheese: Dependence on fat content and packaging conditions. Dairy Science & Technology 90: 565-577.   DOI
20 Semagoto, H. M., Liu, D. S., Koboyatau, K., Hu, J. H., Lu, N. Y., Liu, X. M., Regenstein, J. M., and Zhou, P. 2014. Effects of UV induced photo-oxidation on the physicochemical properties of milk protein concentrate. Food Research International 62: 580-588.   DOI
21 Zayat, M., Parejo, P. G., and Levy, D. 2007. Preventing UVlight damage of light sensitive materials using a highly protective UV-absorbing coating. Chemical Society Reviews 36: 1270-1281.   DOI
22 Dalsgaard, T. K., Otzen, D., Nielsen, J. H., and Larsen, L. B. 2007. Changes in structures of milk proteins upon photo-oxidation. Journal of Agricultural and Food Chemistry 55: 10968-10976.   DOI
23 Gibis, D. and Rieblinger, K., Application of different kinds of packaging to prevent greying of a special type of chilled sausages, The 59th International Congress of Meat Science and Technology (ICOMST), Izmir, Italy, 2013.
24 Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., and Varghese, T. O. 2017. UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules 99: 37-45.   DOI
25 Cristofoli, K., Brandalise, R. N., and Zeni, M. 2012. Photostabilized LDPE films with UV absorber and HALS as protection against the light for rose sparkling wine. Journal of Food Processing and Technology 3: 166.
26 Li, S., Toprak, M. S., Jo, Y. S., Dobson, J., Kim, D. K., and Muhammed, M. 2007. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Advanced Materials 19: 4347-4352.   DOI
27 Kickelbick, G. 2007. Hybrid materials: Synthesis, characterization, and applications. John Wiley & Sons, Weinheim, Germany, 2007.
28 Parejo, P. G., Zayat, M., and Levy, D. 2010. Photostability and retention of UV absorber molecules in sol-gel hybrid UVprotective coatings. Journal of Sol-Gel Science and Technology 53: 280-286.   DOI
29 Cao, T. C., Xu, K. L., Chen, G. M., and Guo, C. Y. 2013. Poly (ethylene terephthalate) nanocomposites with a strong UVshielding function using UV-absorber intercalated layered double hydroxides. RSC Advances 3: 6282-6285.   DOI
30 Zhang, B. and Han, J. 2016. Preparation and UV-protective property of PVAc/ZnO and PVAc/$TiO_2$ microcapsules/poly (lactic acid) nanocomposites. Fibers and Polymers 17: 1849-1857.   DOI
31 Kim, K. H., Hong, E. J., Park, S. J., Kang, J. W., and Noh, B. S. 2011. Pattern recognition analysis for volatile compounds of the whole, skim, UHT-, HTST-, and LTLT-milk under LED irradiations. Korean J. Food Sci. Ani. Resour. 31: 596-602.   DOI
32 Bekbolet, M. 1990. Light effects on food. Journal of Food Protection 53: 430-440.   DOI
33 Hou, X. L., Chen, X. Z., Cheng, Y. X., Xu, H. L., Chen, L. F., and Yang, Y. Q. 2013. Dyeing and UV-protection properties of water extracts from orange peel. Journal of Cleaner Production 52: 410-419.   DOI
34 Mongkholrattanasit, R., Krystůfek, J., Wiener, J., and Vikova, M. 2011. UV protection properties of silk fabric dyed with eucalyptus leaf extract. The Journal of The Textile Institute 102: 272-279.   DOI
35 Wang, Y., Li, T., Ma, P. M., Bai, H. Y., Xie, Y., Chen, M. Q., and Dong, W. F. 2016. Simultaneous enhancements of UVshielding properties and photostability of poly(vinyl alcohol) via incorporation of sepia eumelanin. ACS Sustainable Chemistry & Engineering 4: 2252-2258.   DOI
36 Mortensen, G., Bertelsen, G., Mortensen, B. K., and Stapelfeldt, H. 2004. Light-induced changes in packaged cheeses-A review. International Dairy Journal 14: 85-102.   DOI
37 Bradley Jr, R. 1980. Effect of light on alteration of nutritional value and flavor of milk: A review. Journal of Food Protection 43: 314-320.   DOI
38 Sattar, A., deMan, J. M., and Furia, T. E. 1975. Photooxidation of milk and milk products: A review. Critical Reviews in Food Science & Nutrition 7: 13-37.   DOI
39 Andres, A. I., Moller, J. K., Adamsen, C. E., and Skibsted, L. H. 2004. High pressure treatment of dry-cured Iberian ham. Effect on radical formation, lipid oxidation and colour. European Food Research and Technology 219: 205-210.
40 Adamsen, C. E., Moller, J. K., Hismani, R., and Skibsted, L. H. 2004. Thermal and photochemical degradation of myoglobin pigments in relation to colour stability of sliced drycured Parma ham and sliced dry-cured ham produced with nitrite salt. European Food Research and Technology 218: 403-409.   DOI
41 Kim, H.-W., Bae, S.-K., and Yi, H.-S. 2003. Research on the quality properties of olive oils available in Korea. Korean Journal of Food Science and Technol 35: 1064-1071.
42 Godnjavec, J., Znoj, B., Veronovski, N., and Venturini, P. 2012. Polyhedral oligomeric silsesquioxanes as titanium dioxide surface modifiers for transparent acrylic UV blocking hybrid coating. Progress in Organic Coatings 74: 654-659.   DOI
43 Nouri, L. and Mohammadi Nafchi, A. 2014. Antibacterial, mechanical, and barrier properties of sago starch film incorporated with Betel leaves extract. International Journal of Biological Macromolecules 66: 254-259.   DOI
44 Versino, F. and Garcia, M. A. 2014. Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Industrial Crops and Products 58: 305-314.   DOI
45 Yu, S.-H., Tsai, M.-L., Lin, B.-X., Lin, C.-W., and Mi, F.-L. 2015. Tea catechins-cross-linked methylcellulose active films for inhibition of light irradiation and lipid peroxidation induced ${\beta}$-carotene degradation. Food Hydrocolloids 44: 491-505.   DOI
46 Moyano, M. J., Heredia, F. J., and Melendez-Martinez, A. J. 2010. The color of olive oils: The pigments and their likely health benefits and visual and instrumental methods of analysis. Comprehensive Reviews in Food Science and Food Safety 9: 278-291.   DOI
47 Bodai, Z., Kirchkeszner, C., Novak, M., Nyiri, Z., Kovacs, J., Magyar, N., Ivan, B., Rikker, T., and Eke, Z. 2015. Migration of Tinuvin P and Irganox 3114 into milk and the corresponding authorised food simulant. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment 32: 1358-1366.
48 Monteiro, M., Nerin, C., and Reyes, F. 1999. Migration of Tinuvin P, a UV stabilizer, from PET bottles into fatty-food simulants. Packaging Technology and Science: An International Journal 12: 241-248.   DOI
49 Begley, T. H., Biles, J. E., Cunningham, C., and Piringer, O. 2004. Migration of a UV stabilizer from polyethylene terephthalate (PET) into food simulants. Food Additives and Contaminants 21: 1007-1014.   DOI
50 Zhang, Y., Wu, Y., Chen, M., and Wu, L. 2010. Fabrication method of $TiO_2-SiO_2$ hybrid capsules and their UV-protective property. Colloids and Surfaces A: Physicochemical and Engineering Aspects 353: 216-225.
51 Tian, F., Decker, E. A., and Goddard, J. M. 2013. Controlling lipid oxidation of food by active packaging technologies. Food & Function 4: 669-680.   DOI
52 Nam, H.-Y., Lee, J.-W., Hong, J.-H., and Lee, K.-T. 2007. Analysis of physicochemical charaterization and volatiles in pure or refined olive oils. Journal of the Korean Society of Food Science and Nutrition 36: 1409-1416.   DOI
53 Kuskoski, E. M., Asuero, A. G., Garcia-Parilla, M. C., Troncoso, A. M., and Fett, R. 2004. Actividad antioxidante de pigmentos antocianicos. Food Science and Technology 24: 691-693.   DOI
54 Mexis, S. F., Badeka, A. V., and Kontominas, M. G. 2009. Quality evaluation of raw ground almond kernels (Prunus dulcis): Effect of active and modified atmosphere packaging, container oxygen barrier and storage conditions. Innovative Food Science & Emerging Technologies 10: 580-589.   DOI
55 Calvo, M. E., Castro Smirnov, J. R., and Miguez, H. 2012. Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics 50: 945-956.   DOI
56 Smith, A. M. and Nie, S. 2009. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Accounts of Chemical Research 43: 190-200.
57 Wetchakun, N., Chaiwichain, S., Inceesungvorn, B., Pingmuang, K., Phanichphant, S., Minett, A. I., and Chen, J. 2012. $BiVO_4/CeO_2$ nanocomposites with high visible-light-induced photocatalytic activity. ACS Applied Materials & Interfaces 4: 3718-3723.   DOI
58 Jang, J., Bae, J., and Park, E. 2006. Polyacrylonitrile nanofibers: Formation mechanism and applications as a photoluminescent material and carbon-nanofiber precursor. Advanced Functional Materials 16: 1400-1406.   DOI
59 Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293: 269-271.   DOI
60 Rehman, S., Ullah, R., Butt, A. M., and Gohar, N. D. 2009. Strategies of making $TiO_2$ and ZnO visible light active. Journal of Hazardous materials 170: 560-569.   DOI
61 Choe, E. and Min, D. B. 2005. Chemistry and reactions of reactive oxygen species in foods. Journal of Food Science 70: R142-R159.   DOI
62 Xiao, J., Chen, W. Q., Wang, F. Y. K., and Du, J. Z. 2013. Polymer/$TiO_2$ hybrid nanoparticles with highly effective UVscreening but eliminated photocatalytic activity. Macromolecules 46: 375-383.   DOI
63 Pattison, D. I., Rahmanto, A. S., and Davies, M. J. 2012. Photooxidation of proteins. Photochem Photobiol Sci 11: 38-53.   DOI
64 Shiota, M., Ikeda, N., Konishi, H., and Yoshioka, T. 2002. Photooxidative stability of ice cream prepared from milk fat. Journal of Food Science 67: 1200-1207.   DOI
65 Thron, M., Eichner, K., and Ziegleder, G. 2001. The influence of light of different wavelengths on chlorophyll-containing foods. Lebensmittel-Wissenschaft und Technologie-Food Science and Technology 34: 542-548.   DOI
66 Bekbolet, M. 1990. Light effects on food. Journal of Food Protection 53: 430-440.   DOI
67 Bradley, D. G. and Min, D. B. 1992. Singlet oxygen oxidation of foods. Critical Reviews in Food Science and Nutrition 31: 211-236.   DOI
68 Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., and Debevere, J. 1999. Developments in the active packaging of foods. Trends in Food Science & Technology 10: 77-86.   DOI