DOI QR코드

DOI QR Code

Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region

  • Sayyed, M.I. (University of Tabuk, Faculty of Science, Department of Physics) ;
  • Akman, F. (Bingol University, Vocational School of Technical Sciences, Department of Electronic Communication Technology) ;
  • Kacal, M.R. (Giresun University, Arts and Sciences Faculty, Department of Physics) ;
  • Kumar, A. (Department of Physics, University College)
  • Received : 2018.09.11
  • Accepted : 2018.12.21
  • Published : 2019.04.25

Abstract

The lead element or its salts are good radiation shielding materials. However, their toxic effects are high. Due to less toxicity of bismuth salts, the radiation shielding properties of the bismuth salts have been investigated and compared to that of lead salts to establish them as a better alternative to radiation shielding material to the lead element or its salts. The transmission geometry was utilized to measure the mass attenuation coefficient (${\mu}/{\rho}$) of different salts containing lead and bismuth using a high-resolution HPGe detector and different energies (between 81 and 1333 keV) emitted from point sources of $^{133}Ba$, $^{57}Co$, $^{22}Na$, $^{54}Mn$, $^{137}Cs$, and $^{60}Co$. The experimental ${\mu}/{\rho}$ results are compared with the theoretical values obtained through WinXCOM program. The theoretical calculations are in good agreement with their experimental ones. The radiation protection efficiencies, mean free paths, effective atomic numbers and electron densities for the present compounds were determined. The bismuth fluoride ($BiF_3$) is found to have maximum radiation protection efficiency among the selected salts. The results showed that present salts are more effective for reducing the intensity of gamma photons at low energy region.

Keywords

References

  1. H.C. Manjunatha, L. Seenappa, B.M. Chandrika, C. Hanumantharayappa, A study of photon interaction parameters in barium compounds, Ann. Nucl. Energy 109 (2017) 310-317. https://doi.org/10.1016/j.anucene.2017.05.042
  2. D. Han, W. Kim, S. Lee, H. Kim, P. Romero, Assessment of gamma radiation shielding properties of concrete containers containing recycled coarse aggregates, Constr. Build. Mater. 163 (2018) 122-138. https://doi.org/10.1016/j.conbuildmat.2017.12.078
  3. K.J. Singh, N. Singh, R.S. Kaundal, K. Singh, Gamma-ray shielding and structural properties of PbO-SiO2 glasses, Nucl. Instrum. Methods B 266 (2008) 944-948. https://doi.org/10.1016/j.nimb.2008.02.004
  4. B.O. El-bashir, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material, J. Non-Cryst. Solids 468 (2017) 92-99. https://doi.org/10.1016/j.jnoncrysol.2017.04.031
  5. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94. https://doi.org/10.1016/j.radphyschem.2018.02.026
  6. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, The shielding of ${\gamma}$-rays by concretes produced with barite, Prog. Nucl. Energy 46 (2005) 1-11. https://doi.org/10.1016/j.pnucene.2004.09.015
  7. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Gamma-ray shielding properties of concrete including barite at different energies, Prog. Nucl. Energy 52 (7) (2010) 620-623. https://doi.org/10.1016/j.pnucene.2010.04.006
  8. A.S. Ouda, Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding, Prog. Nucl. Energy 79 (2015) 48-55. https://doi.org/10.1016/j.pnucene.2014.11.009
  9. M.I. Sayyed, M.G. Dong, H.O. Tekin, G. Lakshminarayana, M.A. Mahdi, Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code, Mater. Chem. Phys. 215 (2018) 183-202. https://doi.org/10.1016/j.matchemphys.2018.04.106
  10. G. Lakshminarayana, M.I. Sayyed, S.O. Baki, A. Lira, M.G. Dong, K.M. Kaky, et al., Optical absorption and gamma-radiation-shielding parameter studies of Tm3+-doped multicomponent borosilicate glasses, Appl. Phys. A-Mater. 124 (2018) 378. https://doi.org/10.1007/s00339-018-1801-4
  11. V.P. Singh, N.M. Badiger, N. Chanthima, J. Kaewkhao, Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses, Radiat. Phys. Chem. 98 (2014) 14-21. https://doi.org/10.1016/j.radphyschem.2013.12.029
  12. M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding, J. Alloy. Comp. 727 (2017) 1227-1236. https://doi.org/10.1016/j.jallcom.2017.08.237
  13. M.R. Ambika, N. Nagaiah, V. Harish, N.K. Lokanath, M.A. Sridhar, N.M. Renukappa, et al., Preparation and characterisation of Isophthalic-Bi2O3 polymer composite gamma radiation shields, Radiat. Phys. Chem. 130 (2017) 351-358. https://doi.org/10.1016/j.radphyschem.2016.09.022
  14. V. Harish, N. Nagaiah, T.P. Niranjan, K.T. Varughese, Preparation and characterisation of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications, J. Appl. Polym. Sci. 112 (2009) 1503-1508. https://doi.org/10.1002/app.29633
  15. V. Harish, N. Nagaiah, H.G.H. Kumar, Lead oxides filled Isophthalic resin polymer composites for gamma radiation shielding applications, Indian J. Pure Appl. Phys. 50 (2012) 847-850.
  16. S. Kumar, B. Lal, P. Aghamkar, M. Husain, Influence of sulfur, selenium and tellurium doping on optical, electrical and structural properties of thin films of lead salts, J. Alloy. Comp. 488 (2009) 334-338. https://doi.org/10.1016/j.jallcom.2009.08.126
  17. J.L. Rogers, J.J. Ernat, H. Yung, R.S. Mohan, Environmentally friendly organic synthesis using bismuth compounds. Bismuth (III) bromide catalyzed synthesis of substituted tetrahydroquinoline derivatives, Catal. Commun. 10 (5) (2009) 625-626. https://doi.org/10.1016/j.catcom.2008.11.004
  18. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360. https://doi.org/10.1016/j.radphyschem.2017.09.022
  19. D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, et al., Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes, Mater. Chem. Phys. 213 (2018) 508-517. https://doi.org/10.1016/j.matchemphys.2018.04.019
  20. F. Akman, R. Durak, M.F. Turhan, M.R. Kacal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds, Appl. Radiat. Isot. 101 (2015) 107-113. https://doi.org/10.1016/j.apradiso.2015.04.001
  21. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, X-ray absorption in matter: reengineering XCOM, Radiat. Phys. Chem. 60 (2001) 23-24. https://doi.org/10.1016/S0969-806X(00)00324-8
  22. F. Akman, I.H. Gecibesler, M.I. Sayyed, S.A. Tijani, A.R. Tufekci, I. Demirtas, Determination of some useful radiation interaction parameters for waste foods, Nucl. Eng. Technol. 50 (2018) 944-949. https://doi.org/10.1016/j.net.2018.05.007
  23. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, H.O. Tekin, Y. Elmahroug, P.P. Pawar, Photon attenuation coefficients of different rock samples using MCNPX, Geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 7 (2018) 1-15. https://doi.org/10.1080/00337577108232558
  24. D.K. Gaikwad, P.P. Pawar, T.P. Selvam, Mass attenuation coefficients and effective atomic numbers of biological compounds for gamma ray interactions, Radiat. Phys. Chem. 138 (2017) 75-80. https://doi.org/10.1016/j.radphyschem.2017.03.040
  25. A. Kumar, Gamma ray shielding properties of PbO-Li2O-B2O3 glasses, Radiat. Phys. Chem. 136 (2017) 50-53. https://doi.org/10.1016/j.radphyschem.2017.03.023
  26. R. Bagheri, A.K. Moghaddam, H. Yousefnia, Gamma ray shielding study of barium-bismuth-borosilicate glasses as transparent shielding materials using MCNP-4C code, XCOM program, and available experimental data, Nucl. Eng. Technol. 49 (2017) 216-223. https://doi.org/10.1016/j.net.2016.08.013
  27. F. Akman, R. Durak, M.R. Kacal, F. Bezgin, Study of absorption parameters around the K edge for selected compounds of Gd, X Ray Spectrom. 45 (2) (2016) 103-110. https://doi.org/10.1002/xrs.2676
  28. F. Akman, M.R. Kacal, F. Akman, M.S. Soylu, Determination of effective atomic numbers and electron densities from mass attenuation coefficients for some selected complexes containing lanthanides, Can. J. Phys. 95 (10) (2017) 1005-1011. https://doi.org/10.1139/cjp-2016-0811
  29. V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study, J. Non-Cryst. Solid. 404 (2014) 167-173. https://doi.org/10.1016/j.jnoncrysol.2014.08.003
  30. M.H. Hazlan, M. Jamil, R.M. Ramli, N.Z.N. Azman, X-ray attenuation characterisation of electrospun Bi2O3/PVA and WO3/PVA nanofibre mats as potential X-ray shielding materials, Appl. Phys. A-Mater. 124 (2018) 497. https://doi.org/10.1007/s00339-018-1915-8
  31. M. Kurudirek, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications, Radiat. Phys. Chem. 102 (2014) 139-146. https://doi.org/10.1016/j.radphyschem.2014.04.033
  32. C.V. More, R.M. Lokhande, P.P. Pawar, Effective atomic number and electron density of amino acids within the energy range of 0.122-1.330MeV, Radiat. Phys. Chem. 125 (2016) 14-20. https://doi.org/10.1016/j.radphyschem.2016.02.024
  33. M.I. Sayyed, F. Akman, I.H. Gecibesler, H.O. Tekin, Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region, Nucl. Sci. Tech. 29 (2018) 144. https://doi.org/10.1007/s41365-018-0475-0
  34. M.I. Sayyed, F. Akman, V. Turan, A. Araz, Evaluation of radiation absorption capacity of some soil samples, Radiochim. Acta (2018), https://doi.org/10.1515/ract-2018-2996.
  35. F. Akman, I.H. Gecibesler, I. Demirkol, A. Cetin, Determination of effective atomic numbers and electron densities for some synthesized triazoles from the measured total mass attenuation coefficients at different energies, Can. J. Phys. (2018). https://doi.org/10.1139/cjp-2017-0923.

Cited by

  1. Structural, optical, and shielding investigations of TeO2-GeO2-ZnO-Li2O-Bi2O3 glass system for radiation protection applications vol.125, pp.6, 2019, https://doi.org/10.1007/s00339-019-2709-3
  2. Synthesis, physical, structural and shielding properties of newly developed B2O3-ZnO-PbO-Fe2O3 glasses using Geant4 code and WinXCOM program vol.125, pp.8, 2019, https://doi.org/10.1007/s00339-019-2831-2
  3. Investigation of γ-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite vol.95, pp.8, 2020, https://doi.org/10.1088/1402-4896/ab9a6e
  4. Advanced X-ray shielding and antibacterial smart multipurpose fabric impregnated with polygonal shaped bismuth oxide nanoparticles in carbon nanotubes via green synthesis vol.14, pp.2, 2021, https://doi.org/10.1080/17518253.2021.1912192
  5. Advanced X-ray shielding and antibacterial smart multipurpose fabric impregnated with polygonal shaped bismuth oxide nanoparticles in carbon nanotubes via green synthesis vol.14, pp.2, 2021, https://doi.org/10.1080/17518253.2021.1912192
  6. Optical features of PbBr2 semiconductor thin films for radiation attenuation application vol.32, pp.12, 2019, https://doi.org/10.1007/s10854-021-06257-y
  7. Gamma radiation attenuation characteristics of polyimide composite with WO2 vol.137, 2019, https://doi.org/10.1016/j.pnucene.2021.103795
  8. Monte Carlo Computational Software and Methods in Radiation Dosimetry vol.5, pp.3, 2021, https://doi.org/10.33166/aetic.2021.03.004