A study on cytocompatibility of ion beam-irradiated chitosan sponges

이온 빔 조사 처리된 키토산 스펀지의 세포적합도에 관한 연구

  • Ku, Young (Department of Periodontology and Dental Research Institute, College of Dentistry, Seoul National University)
  • 구영 (서울대학교 치과대학 치주과학교실 및 치학연구소)
  • Published : 1998.06.30

Abstract

Chitosan is a biodegradable and non-toxic material with a molecular weight of 800-1,500Kd which can be obtained in various forms with extraordinary chemical structures and biological characteristics of which enables it to be used in many fields as a biomaterial. Ion irradiation is a useful tool to modify chemical structures and physical properties of high molecular weight polymers. The basic hypothesis of this study is that when surface properties of chitosan in a sponge form are modified with ion beam-irradiation and cell adhesion properties of chitosan would improve and thereby increase the regenerative ability of the damaged bone. The purpose of this study was to illuminate the changes in the cytocompatibility of chitosan sponges after ion beam-irradiation as a preliminary research. Argon($Ar^+$) ions were irradiated at doses of $5{\times}10^{13}$, $5{\times}10^{15}$ at 35 keV on surfaces of each sponges. Cell adhesion and activity of alkaline phosphatases were studied using rat fetal osteoblasts. The results of this study show hat ion beam-irradiation at optimal doses($5{\times}10^^{13}\;Ar^+\;ion/cm^2$) is a useful method to improve cytocompatibility without sacrificing cell viability and any changing cell phenotypes. These results show that ion beam-irradiated chitosan sponges can be further applied as carriers in tissue engineering and as bone filling materials.

Keywords