• Title/Summary/Keyword: toxic ion

Search Result 160, Processing Time 0.026 seconds

Electrochemical Behaviors of Binary Ti-Zr Alloys

  • Oh, M.Y.;Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Corrosion Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.89-92
    • /
    • 2009
  • Pure Ti as well as Ti-6Al-4V alloy exhibit excellent properties for dental implant applications. However, for a better biocompatibility it seems important to avoid in the composition the presence of V due to the toxic effects of V ion release. Thus Al and V free and composed of non-toxic element such as Nb, Zr alloys as biomaterials have been developed. Especially, Zr contains to same family in periodic table as Ti. The addition of Zr to Ti alloy has an excellent mechanical properties, good corrosion resistance, and biocompatibility. In this study, the electrochemical characteristics of Ti-Zr alloys for biomaterials have been investigated using by electrochemical methods. Methods: Ti-Zr(10, 20, 30 and 40 wt%) alloys were prepared by arc melting and homogenized for 24 hr at $1000^{\circ}C$ in argon atmosphere. Phase constitutions and microstructure of the specimens were characterized by XRD, OM and SEM. The corrosion properties of the specimens were examined through potentiodynamic test (potential range of -1500 ~ 2000 mV), potentiostatic test (const. potential of 300 mV) in artificial saliva solution by potentiostat (EG&G Co, PARSTAT 2273. USA).

Chemical Properties of Mineral Surfaces and Metal Ion Sorption: A Review (광물표면의 화학적 특성과 금속이온 수착의 고찰: A Review)

  • Yoon, Soh-Joung
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.205-215
    • /
    • 2012
  • Metal ions, toxic or potentially toxic to biota and human beings, can be immobilized by sorption onto the mineral surfaces in soils and sediments. This article briefly explains theories regarding the chemical properties of mineral surfaces to sorb metal ions and processes of extended X-ray absorption fine structure (EXAFS) analysis for sorption study, and reviews atomic-scale findings on metal sorption on mineral surfaces. The theoretical understanding on the chemistry of mineral surfaces and metal sorption is fundamental to the proper analysis of the atomic-scale spectroscopy to determine the sorption phases. Atomic-scale findings on metal sorption phases discussed here include co-precipitation, ternary complexation, aging effects, and desorption possibilities, as well as outer-sphere complexation, inner-sphere complexation, and surface precipitation.

Studies on the Toxic Substsnce of Mussel Mytilus Sp. (담치類의 有毒成分에 관한 硏究)

  • 전중균;야구옥
    • 한국해양학회지
    • /
    • v.22 no.4
    • /
    • pp.271-278
    • /
    • 1987
  • Attempts were made to elucidate the responsible toxin in mussel Mytilus sp. which caused a food pisoning incident in March 1986 in Pusan, Korea. Two persons were dead and 15 persons intoxicated in the incident. The mid-gut glands of the mussel collected were extracted with dichlorlmethane, filtered through a Diaflo ulteafiltration membrane, and then purified by chromatography on Bio-Gel P-2 and Bio-Rex 70. The toxic fractions obtained were analysed by electrophoresis, TLC and ion-pairing reversed phase HPLC analyses. The results showed that the fractions contained GTW$\_$1-4/ as the major component, along with neoSTX, PX$\_$1,2/ as the minor. It was concluded from these results that the causative mussel toxin of the above food poisoning was PSP.

  • PDF

The Surface Properties and Wear Resistance of Cr-Mo-V Steel by Salt bath Process after Pseudo-electrolysis (의(擬)전기분해식 염욕질화처리를 통한 Cr-Mo-V강의 내마모와 표면성질에 관한 연구)

  • Jung, Gil Bong;Yoon, Jae Hong;Hur, Sung Kang
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.225-234
    • /
    • 2010
  • Salt bath nitriding, which has been developed recently by domestic company, is an emerging ecofriendly surface treatment. The salt bath nitriding is accompanied by the electrolysis process in the pretreatment step, and this whole processis called Pseudo-Electrolysised Salt bath Nitriding (PESN). The PESN creates only $NH_3$ and non-toxic salts without harmful $CN^{-}$ or toxic gas such as that found in previous salt bath nitriding. In general, ion nitriding and gas nitriding create high hardness and a strong brittle white layer on the surface. However, the PESN shows a thin white and gray layer. The PESN was applied to the defense material, 3%Cr-Mo-V steel, to study the surface characteristics at $480^{\circ}C$, $530^{\circ}C$, and $580^{\circ}C$ for 4 hrs, 20 hrs, 40 hrs, and 60 hrs of nitriding time condition. As a result, the best nitriding layer was found at $530^{\circ}C$ for 40 hrs. If we improve corrosion resistance and nitriding layer depth, the PESN will be able to be applied to the defense industry parts.

Ion-Exchange Chromatography of Some Toxic Heavy Metal Ions (인체유해 중금속이온의 이온교환 크로마토그라피)

  • Lee, Dai Woon;Yu, Euy Kyung
    • 한국해양학회지
    • /
    • v.10 no.1
    • /
    • pp.33-40
    • /
    • 1975
  • The ion exchange sorption and elution behavior of toxic heavy metal ions, such as Hg(II) and Zn(II), have been studied in aqueous and methanolic media of MCl (M: K, Na and NH$\_$4/). The ion exchange resins studied are Dowex 1-X8, Cl$\^$-/ (50-100 or 200-400 mesh) and Dowex 50W-X8, M$\^$+/ form (M: K, Na, NH$\_$4/ and H). the sorption and elution of metal ion on the resin is largely due to the formation of the anionic chlororocomplex of metal ion. The addition of methanol in the medium contributes markedly to the distribution data. In order to apply this work for the treatment of polluted sea water with toxic heavy metal ions, removal experiment of the metal ions from the synthetic sample solution was investigated.

  • PDF

Assessment for Effect of Water Environment by Addition of Improvement Agents on Sediments (저질 개선제의 주입에 의한 수 환경에 미치는 영향 평가)

  • Kim Woo-Hang;Kim Do-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.69-73
    • /
    • 2004
  • Control if Sediment is very important in prawn farm due to the eruption of toxic materials such as unionized $H_{2}S,\;NH_{3}\;and\;NO_3$. In this study, column test was conducted with filter media such as activated carbon, zeolite, oyster shell and iron chloride to evaluate the reduction of toxicity from sediment. ammonia-N($NH_3$) was effectively removed by Zeolite and oyster shell. It was indicated that ammonium ion($NH_4^+$) was removed by ion exchange of zeolite. And the ammonia in the column of oyster shell was existed as the form of $NH_4^+$, which is not toxic for prawn because oyster shell was stably kept at $8{\sim}9g$ of pH. Therefore, some of ammonia($NH_4^+$) was removed by oyster shell. Hydrogen sulfide and COD were effectively removed by adsorption of activated carbon and a partial removal of hydrogen sulfide was accomplished by Oyster shell. Phosphorous was removed by activated carbon, oyster shell and iron chloride. In prawn farm, the concentration of ammonia was increased with increase of pH by algae photosynthesis in the column of activated carbon, zeolite and iron chloride, but it was revealed that pH was stably kept in the column of oyster shell.

  • PDF

Identification and toxigenic potential of a Nostoc sp.

  • Nowruzi, Bahareh;Khavari-Nejad, Ramezan-Ali;Sivonen, Karina;Kazemi, Bahram;Najafi, Farzaneh;Nejadsattari, Taher
    • ALGAE
    • /
    • v.27 no.4
    • /
    • pp.303-313
    • /
    • 2012
  • Cyanobacteria are well known for their production of a multitude of highly toxic and / or allelopathic compounds. Among the photosynthetic microorganisms, cyanobacteria, belonging to the genus Nostoc are regarded as good candidate for producing biologically active secondary metabolites which are highly toxic to humans and other animals. Since so many reports have been published on the poisoning of different animals from drinking water contaminated with cyanobacteria toxins, it might be assumed that bioactive compounds are found only in aquatic species causes toxicity. However, the discovery of several dead dogs, mice, ducks, and fish around paddy fields, prompted us to study the toxic compounds in a strain of Nostoc which is most abundant in the paddy fields of Iran, using polymerase chain reaction and liquid chromatography coupled with a diode array detector and mass spectrophotometer. Results of molecular analysis demonstrated that the ASN_M strain contains the nosF gene. Also, the result of ion chromatograms and $MS^2$ fragmentation patterns showed that while there were three different peptidic compound classes (anabaenopeptin, cryptophycin, and nostocyclopeptides), there were no signs of the presence of anatoxin-a, homoanatoxin-a, hassallidin or microcystins. Moreover, a remarkable antifungal activity was identified in the methanolic extracts. Based on the results, this study suggests that three diverse groups of potentially bioactive compounds might account for the death of these animals. This case is the first documented incident of toxicity from aquatic cyanobacteria related intoxication in dogs, mice, and aquatic organisms in Iran.

Biosorption of Hg(II) ions from synthetic wastewater using a novel biocarbon technology

  • Singanan, Malairajan
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • Mercury is a toxic pollutants present in different types of industrial effluents and is responsible for environmental pollution. Removal of Hg(II) ions from synthetic wastewater was studied using the activated biocarbon produced from the leaves of Tridax procumbens (Asteraceae). The particle size of the biocarbon (BC) is in the range of $100-120{\mu}m$. The effects of initial metal ion concentration, pH, contact time, and amount of biocarbon on the biosorption process were studied at temperature of $28{\pm}2^{\circ}C$. Batch experimental studies showed that an equilibrium time of 160 min was required for the maximum removal of Hg(II) at the optimized biocarbon dose of 2.5 g per 100 mL of synthetic wastewater. The optimum pH required for maximum removal (96.5%) of Hg(II) ions was found to be 5.5. The biosorption of metal ions onto activated biocarbon surface is probably via an ion exchange mechanism. The biocarbon can be regenerated with minimum loss. Further, it can be reused without any chemical activation. The findings of the research suggested that, the biocarbon produced from cost effective renewable resources can be utilized for the treatment of industrial wastewater.

Bioadsorbents for remediation of heavy metals: Current status and their future prospects

  • Gupta, Vinod Kumar;Nayak, Arunima;Agarwal, Shilpi
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.1-18
    • /
    • 2015
  • The biosorption process has been established as characteristics of dead biomasses of both cellulosic and microbial origin to bind metal ion pollutants from aqueous suspension. The high effectiveness of this process even at low metal concentration, similarity to ion exchange treatment process, but cheaper and greener alternative to conventional techniques have resulted in a mature biosorption technology. Yet its adoption to large scale industrial wastewaters treatment has still been a distant reality. The purpose of this review is to make in-depth analyses of the various aspects of the biosorption technology, staring from the various biosorbents used till date and the various factors affecting the process. The design of better biosorbents for improving their physico-chemical features as well as enhancing their biosorption characteristics has been discussed. Better economic value of the biosorption technology is related to the repeated reuse of the biosorbent with minimum loss of efficiency. In this context desorption of the metal pollutants as well as regeneration of the biosorbent has been discussed in detail. Various inhibitions including the multi mechanistic role of the biosorption technology has been identified which have played a contributory role to its non-commercialization.

Decomposition of PVC and Ion exchange resin in supercritical water

  • Lee, Sang-Hwan;Yasuyo, Hosgujawa;Kim, Jung-Sung;Park, Yoon-Yul;Hiroshi, Tomiyasu
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2005.05a
    • /
    • pp.267-271
    • /
    • 2005
  • This experiment was carried out at 450"C, which is relatively lower than the temperature for supercritical water oxidation (600-650$^{\circ}C$). In this experiment, the decomposition rates of various incombustible organic substances were very high. In addition, it was confirmed that hetero atoms existed in organic compounds and chlorine was neutralized by sodium(salt formation).However, to raise the decomposition rate, relatively large amount of sodium nitrate(3-4 times the equivalent weight) was required. When complete oxidation is intended as in the case with PCB, the amount of oxidizer and decomposition cost is important. But when vaporization reduction is required as in the case with nuclear wastes, the amount of radioactive wastes increases instead. But as can be seen in the result of XRD measurement, unreacted sodium nitrate remained unchanged. If oxidation reaction of organic substance simply depends on collision frequency, unreacted sodium nitrate can be recovered and reused, then oxidation equivalent weight would be sufficient. In the gas generated, toxic gas was not found. As the supercritical water medium has high reactivity, it is difficult to generate relatively low energy level SO$_{X}$, and NO$_{X}$.

  • PDF