Browse > Article
http://dx.doi.org/10.4490/algae.2012.27.4.303

Identification and toxigenic potential of a Nostoc sp.  

Nowruzi, Bahareh (Faculty of Biological Sciences, Kharazmi University)
Khavari-Nejad, Ramezan-Ali (Faculty of Biological Sciences, Kharazmi University)
Sivonen, Karina (Department of Applied Chemistry and Microbiology, University of Helsinki)
Kazemi, Bahram (Department of Biotechnology, Shahid Beheshti University of Medical Sciences)
Najafi, Farzaneh (Faculty of Biological Sciences, Kharazmi University)
Nejadsattari, Taher (Department of Biology, Science and Research Branch, Islamic Azad University)
Publication Information
ALGAE / v.27, no.4, 2012 , pp. 303-313 More about this Journal
Abstract
Cyanobacteria are well known for their production of a multitude of highly toxic and / or allelopathic compounds. Among the photosynthetic microorganisms, cyanobacteria, belonging to the genus Nostoc are regarded as good candidate for producing biologically active secondary metabolites which are highly toxic to humans and other animals. Since so many reports have been published on the poisoning of different animals from drinking water contaminated with cyanobacteria toxins, it might be assumed that bioactive compounds are found only in aquatic species causes toxicity. However, the discovery of several dead dogs, mice, ducks, and fish around paddy fields, prompted us to study the toxic compounds in a strain of Nostoc which is most abundant in the paddy fields of Iran, using polymerase chain reaction and liquid chromatography coupled with a diode array detector and mass spectrophotometer. Results of molecular analysis demonstrated that the ASN_M strain contains the nosF gene. Also, the result of ion chromatograms and $MS^2$ fragmentation patterns showed that while there were three different peptidic compound classes (anabaenopeptin, cryptophycin, and nostocyclopeptides), there were no signs of the presence of anatoxin-a, homoanatoxin-a, hassallidin or microcystins. Moreover, a remarkable antifungal activity was identified in the methanolic extracts. Based on the results, this study suggests that three diverse groups of potentially bioactive compounds might account for the death of these animals. This case is the first documented incident of toxicity from aquatic cyanobacteria related intoxication in dogs, mice, and aquatic organisms in Iran.
Keywords
cyanobacteria; natural bioactive compound; Nostoc; toxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dembitsky, V. M. & Rezanka, T. 2005. Metabolites produced by nitrogen-fixing Nostoc species. Folia Microbiol. 50:363-391.   DOI
2 Desikachary, T. V. 1959. Cyanophyta. Indian Council of Agricultural Research, New Delhi, 686 pp.
3 Dittmann, E., Neilan, B. A. & Borner, T. 2001. Molecular biology of peptide and polyketide biosynthesis in cyanobacteria. Appl. Microbiol. Biotechnol. 57:467-473.   DOI
4 Ehrenreich, I. M., Waterbury, J. B. & Webb, E. A. 2005. Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl. Environ. Microbiol. 11:7401-7413.
5 Espinel-Ingroff, A. 2007. Standardized disk diffusion method for yeasts. Clin. Microbiol. Newsl. 29:97-100.   DOI
6 Fewer, D., Jokela, J., Rouhiainen, L., Wahlsten, M., Koskenniemi, K., Stal, L. J. & Sivonen, K. 2009. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 73:924-937.   DOI
7 Fujii, K., Sivonen, K., Kashiwagi, T., Hirayama, K. & Harada, K. 1999. Nostophycin, a novel cyclic peptide from the toxic cyanobacterium, Nostoc sp. 152. J. Org. Chem. 64:5777-5782.   DOI
8 Golakoti, T., Yoshida, W. Y., Chaganty, S. & Moore, R. E. 2000. Isolation and structures of nostopeptolides A1, A2 and A3 from the cyanobacterium Nostoc sp. GSV224. Tetrahedron 56:9093-9102.   DOI
9 Golakoti, T., Yoshida, W. Y., Chaganty, S. & Moore, R. E. 2001. Isolation and structure determination of nostocyclopeptides A1 and A2 from the terrestrial cyanobacterium Nostoc sp. ATCC53789. J. Nat. Prod. 64:54-59.   DOI
10 Harada, K. 2004. Production of secondary metabolites by freshwater cyanobacteria. Chem. Pharm. Bull. 52:889-899.   DOI
11 Hoffmann, D., Hevel, J. M., Moore, R. E. & Moore, B. S. 2003. Sequence analysis and biochemical characterization of the nostopeptolide A biosynthetic gene cluster from Nostoc sp. GSV224. Gene 311:171-180.   DOI
12 Hunsucker, S. W., Klage, K., Slaughter, S. M., Potts, M. & Helm, R. F. 2004. A preliminary investigation of the Nostoc punctiforme proteome. Biochem. Biophys. Res. Commun. 317:1121-1127.   DOI
13 Jaki, B., Heilmann, J. & Sticher, O. 2000. New antibacterial metabolites from the cyanobacterium Nostoc commune (EAWAG 122b). J. Nat. Prod. 63:1283-1285.   DOI
14 Jokela, J., Herfindal, L., Wahlsten, M., Permi, P., Selheim, F., Vasconçelos, V., Døskeland, S. O. & Sivonen, K. 2010. A novel cyanobacterial nostocyclopeptide is a potent antitoxin against microcystins. ChemBioChem 11:1594-1599.   DOI
15 Kajiyama, S., Kanzaki, H., Kawazu, K. & Kobayashi, A. 1998. Nostofungicidine, an antifungal lipopeptide from the field-grown terrestrial blue-green alga Nostoc commune. Tetrahedron Lett. 39:3737-3740.   DOI   ScienceOn
16 Koskenniemi, K., Lyra, C., Rajaniemi-Wacklin, P., Jokela. J. & Sivonen, K. 2007. Quantitative real-time PCR detection of toxic Nodularia cyanobacteria in the Baltic Sea. Appl. Environ. Microbiol. 73:2173-2179.   DOI
17 Kanekiyo, K., Lee, J. -B., Hayashi, K., Takenaka, H., Hayakawa, Y., Endo, S. & Hayashi, T. 2005. Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J. Nat. Prod. 68:1037-1041.   DOI   ScienceOn
18 Kaushik, B. D. 1987. Laboratory methods for blue-green algae. Associated Publishing Co., New Delhi, pp. 17-63.
19 Komarek, J. & Anagnostidis, K. 1989. Modern approach to the classification system of Cyanophytes, 4. Nostocales. Arch. Hydrobiol. Suppl. 82:247-345.
20 Liang, J., Moore, R. E., Moher, E. D., Munroe, J. E., Al-awar, R. S., Hay, D. A., Varie, D. L., Zhang, T. Y., Aikins, J. A., Martinelli, M. J., Shih, C., Ray, J. E., Gibson, L. L., Vasudevan, V., Polin, L., White, K., Kushner, J., Simpson, C., Pugh, S. & Corbett, T. H. 2005. Cryptophycins-309, 249 and other cryptophycin analogs: preclinical efficacy studies with mouse and human tumors. Investig. New Drugs 23:213-224.   DOI
21 Nubel, U., Garcia-Pichel, F. & Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63:3327-3332.
22 Luesch, H., Hoffmann, D., Hevel, J. M., Becker, J. E., Golakoti, T. & Moore, R. E. 2003. Biosynthesis of 4-methylproline in cyanobacteria: cloning of nosE and nosF genes and biochemical characterization of the encoded dehydrogenase and reductase activities. J. Org. Chem. 68:83-91.   DOI
23 Murakami, M., Suzuki, S., Itou, Y., Kodani, S. & Ishida, K. 2000. New anabaenopeptins, potent carboxypeptidase-A inhibitors from the cyanobacterium Aphanizomenon flos-aquae. J. Nat. Prod. 63:1280-1282.   DOI
24 Namikoshi, M., Rinehart, K. L., Sakai, R., Sivonen, K. & Carmichael, W. W. 1990. Structures of three new cyclic heptapeptide hepatotoxins produced by the cyanobacterium (blue-green alga) Nostoc sp. strain 152. J. Org. Chem. 55:6135-6139.   DOI
25 Oksanen, I., Jokela, J., Fewer, D. P., Wahlsten, M., Rikkinen, J. & Sivonen, K. 2004. Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl. Environ. Microbiol. 70:5756-5763.   DOI
26 Rajaniemi, P., Hrouzek, P., Kaštovská, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J. & Sivonen, K. 2005. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int. J. Syst. Evol. Microbiol. 55:11-26.   DOI
27 Roger, P. A. & Kulasooriya, A. 1980. Blue-green algae and rice. International Rice Research Institute, Manila, 112 pp.
28 Rantala, A., Rajaniemi-Wacklin, P., Lyra, C., Lepisto, L., Rintala, J., Mankiewicz-Boczek, J. & Sivonen, K. 2006. Detection of microcystin-producing cyanobacteria in finnish lakes with genus-specific microcystin synthetase gene E (mcyE) PCR and associations with environmental factors. Appl. Environ. Microbiol. 72:6101-6110.   DOI
29 Rantala-Ylinen, A., Kana, S., Wang, H., Rouhiainen, L., Wahlsten, M., Rizzi, E., Berg, K., Gugger, M. & Sivonen, K. 2011. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol. 77:7271-7278.   DOI
30 Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1-61.   DOI
31 Schwartz, R. E., Hirsch, C. F., Sesin, D. F., Flor, J. E., Chartrain, M., Fromtling, R. E., Harris, G. H., Salvatore, M. J., Liesch, J. M. & Yudin, K. 1990. Pharmaceuticals from cultured algae. J. Ind. Microbiol. 5:113-124.   DOI
32 Vaitomaa, J., Rantala, A., Halinen, K., Rouhiainen, L., Tallberg, P., Mokelke, L. & Sivonen, K. 2003. Quantitative real-time PCR for determination of microcystin synthetase E copy numbers for Microcystis and Anabaena in lakes. Appl. Microbiol. Immunol. 12:7289-7297.
33 Sivonen, K. 2009. Cyanobacterial toxins. In Schaechter, M. (Ed.) Encyclopedia of Microbiology. Elsevier, Oxford, pp. 290-307.
34 Smith, F. M. J., Wood, S. A., Van Ginkel, R., Broady, P. A. & Gaw, S. 2011. First report of saxitoxin production by a species of the freshwater benthic cyanobacterium, Scytonema Agardh. Toxicon 57:566-573.   DOI
35 Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 8:1596-1599.
36 Bui, H. T. N., Jansen, R., Pham, H. T. L. & Mundt, S. 2007. Carbamidocyclophanes A-E, chlorinated paracyclophanes with cytotoxic and antibiotic activity from the vietnamese cyanobacterium Nostoc sp. J. Nat. Prod. 4:499-503.
37 Becker, J. E., Moore, R. E. & Moore, B. S. 2004. Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization. Gene 325:35-42.   DOI