Browse > Article
http://dx.doi.org/10.4491/eer.2015.018

Bioadsorbents for remediation of heavy metals: Current status and their future prospects  

Gupta, Vinod Kumar (Department of Chemistry, Indian Institute of Technology Roorkee)
Nayak, Arunima (Department of Chemistry, Graphic Era Deemed University)
Agarwal, Shilpi (Department of Chemistry, Indian Institute of Technology Roorkee)
Publication Information
Abstract
The biosorption process has been established as characteristics of dead biomasses of both cellulosic and microbial origin to bind metal ion pollutants from aqueous suspension. The high effectiveness of this process even at low metal concentration, similarity to ion exchange treatment process, but cheaper and greener alternative to conventional techniques have resulted in a mature biosorption technology. Yet its adoption to large scale industrial wastewaters treatment has still been a distant reality. The purpose of this review is to make in-depth analyses of the various aspects of the biosorption technology, staring from the various biosorbents used till date and the various factors affecting the process. The design of better biosorbents for improving their physico-chemical features as well as enhancing their biosorption characteristics has been discussed. Better economic value of the biosorption technology is related to the repeated reuse of the biosorbent with minimum loss of efficiency. In this context desorption of the metal pollutants as well as regeneration of the biosorbent has been discussed in detail. Various inhibitions including the multi mechanistic role of the biosorption technology has been identified which have played a contributory role to its non-commercialization.
Keywords
Algae; Bacteria; Biosorption; Fungi; Plant organic waste; Toxic metal;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M. Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem. 2006;41:609-615.   DOI   ScienceOn
2 Bhatnagar A, Minocha AK, Sillanpaa M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem. Eng. J. 2010;48:181-186.   DOI   ScienceOn
3 El-Shafey EI. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk. J. Hazard. Mater. 2010;175:319-327.   DOI   ScienceOn
4 Zabihi M, Ahmadpour A, Asl AH. Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J. Hazard. Mater. 2009;167:230-236.   DOI   ScienceOn
5 Anirudhan TS, Divya L, Ramachandran M. Mercury (II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery. J. Hazard. Mater. 2008;157:620-626.   DOI   ScienceOn
6 Naiya TK, Bhattacharya AK, Mandal S, DasSK. The sorption of lead(II) ions on rice husk ash. J. Hazard. Mater. 2009;163: 1254-1264.   DOI   ScienceOn
7 Bulut Y, Baysal Z. Removal of Pb(II) from wastewater using wheat bran. J. Environ. Manage. 2006;78:107-113.   DOI   ScienceOn
8 Kadirvelu K, Namasivayam C. Agricultural by-product as metal adsorbent: Sorption of lead(II) from aqueous solution onto coirpith carbon. Environ. Technol. 2000;21:1091-1097.   DOI
9 Zuorro A, Lavecchia R. Adsorption of Pb(II) on spent leaves of green and black tea. Am. J. Appl. Sci. 2010;7:153-159.   DOI   ScienceOn
10 Boudrahem F, Aissani-Benissad F, Ait-Amar H. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride. J. Environ. Manag. 2009;90:3031-3039.   DOI   ScienceOn
11 Reddy DHK, Seshaiah K, Reddy AVR., Rao MM, Wang MC. Biosorption of $Pb^{2+}$ from aqueous solutions by Moringa oleifera bark: equilibrium and kinetic studies. J. Hazard. Mater. 2010;174:831-838.   DOI   ScienceOn
12 Sekhar MC. Removal of lead from aqueous effluents by adsorption on coconut shell carbon. J. Environ. Sci. Eng. 2008;50: 137-140.
13 Pehlivan E, Altun T, Cetin S, Bhanger MI. Lead sorption by waste biomass of hazelnut and almond shell. J. Hazard. Mater. 2009;167:1203-1208.   DOI   ScienceOn
14 Subbaiah MV, Vijaya Y, Kumar NS, Reddy AS, Krishnaiah A. Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies. Colloids and Surf. B Biointerfaces 2009;74:260-265.   DOI   ScienceOn
15 Ajmal M, Rao RAK, Ahmad R, Ahmad J. Adsorption studies on Citrus reticulate (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 2000;79:117-131.   DOI   ScienceOn
16 Bhatnagar A, Minocha AK. Biosorption optimization of nickel removal from water using Punica granatum peels waste. Colloids and Surf. B Biointerfaces 2010;76:544-548.   DOI   ScienceOn
17 Ramana DKV, Jamuna K, Satyanarayana B, Venkateswarlu B, Rao MM, Seshaiah K. Removal of heavy metals from aqueous solutions using activated carbon prepared from Cicer arietinum. Toxicol. Environ. Chem. 2010;92:1447-1460.   DOI   ScienceOn
18 Ahluwalia SS, Goyal D. Removal of heavy metals by waste tea leaves from aqueous solution. Eng. Life Sci. 2005;5:158-162.   DOI   ScienceOn
19 Wasewar KL, Atif M, Prasad B, Mishra IM. Batch adsorption of zinc on tea factory waste. Desalination 2009;244:66-71.   DOI   ScienceOn
20 Amuda OS, Giwa AA, Bello IA. Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochem. Eng. J. 2007;36:174-181.   DOI   ScienceOn
21 Choi SB, Yun YS. Lead biosorption by waste biomass of Corynebacterium glutamicum generated from lysine fermentation process. Biotechnol. Lett. 2004;26:331-336.   DOI   ScienceOn
22 Lu WB, Shi JJ, Wang CH, Chang JS. Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J. Hazard. Mater. 2006;134:80-86.   DOI   ScienceOn
23 Uslu G, Tanyol M. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead(II) and copper(II) ions onto Pseudomonas putida: effect of temperature. J. Hazard. Mater. 2006;135:87-93.   DOI   ScienceOn
24 Selatnia A, Bakhti MZ, Madani A, Kertous L, Mansouri Y. Biosorption of $Cd^{2+}$ fromaqueous solution by a NaOH-treated bacterial dead Streptomyces rimosus biomass. Hydrometallurgy 2004;75:11-24.   DOI   ScienceOn
25 Rodelo G, Gomez A, Ruiz-Manriquez A. Biosorption of Pb(II) by Thiobacillus ferrooxidans. Rev. Int. Contam. Ambient. 2002;18:33-37.
26 Liu HL, Chen BY, Lan YW, Cheng YC. Biosorption of Zn(II) and Cu(II) by the indigenous Thiobacillus thiooxidans. Chem. Eng. J. 2004;97:195-201.   DOI   ScienceOn
27 Gaur N, Dhankhar R. Removal of $Zn^{2+}$ ions from aqueous solution using anabaena variabilis: Equilibrium and kinetic studies. Int. J. Environ. Res. 2009;3:605-616.
28 Wang XS, Huang LP, Li Y, Chen J. Removal of copper(II) ions from aqueous solution using sphingomonas paucimobolis biomass. Adsorption Sci. Tech. 2010;28:137-147.   DOI   ScienceOn
29 Ozturk A, Artan T, Ayar A. Biosorption of nickel(II) and copper( II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloid Surf. B Biointerfaces 2004;34:105-111.   DOI   ScienceOn
30 Zheng GH, Wang L, Zhou Q, Li FT. Optimisation of cell surface and structural components for improving adsorption capacity of Pseudomonas putida 5-x to $Cu^{2+}$. Inter. J. Environ. Pollut. 2008;34:285-296.   DOI   ScienceOn
31 LoukidouMX, Karapantsios TD, Zouboulis AI, MatisKA. Diffusion kinetic study of cadmiurn(II) biosorption by Aeromonas caviae. J. Chem. Technol. Biotechnol. 2004;79:711-719.   DOI   ScienceOn
32 Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Tzannetaki EL, Liakopoulou-Kyriakides M. Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour. Technol. 2007;98:2859-2965.   DOI   ScienceOn
33 Yu CL, Lu ZP, Ge FZ, Zhao EL. Biosorption of cadmium onto Pseudomonas fluorescens: Application of isotherm and kinetic models. Adv. Mat. Res. 2011;171-172:49-52.
34 Sahin Y, Ozturk A. Biosorption of chromium (VI) ions from aqueous solution by the bacterium Bacillus thuringiensis. Process Biochem. 2005;40:1895-1901.   DOI   ScienceOn
35 Congeevaram S, Dhanarani S, Park J, Dexilin M, Thamaraiselvi K. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J. Hazard. Mater. 2007; 146:270-277.   DOI   ScienceOn
36 Chen C, Wang J. Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2007;74:911-917.   DOI
37 Anjana K, Kaushik A, Kiran B, Nisha R. Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. J. Hazard. Mater. 2007;148:383-386.   DOI   ScienceOn
38 Ozturk A. Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis. J. Hazard. Mater. 2007;147: 518-523.   DOI   ScienceOn
39 Svecova L, Spanelova M, Kubal M, Guibal E. Cadmium, lead and mercury biosorption on waste fungal biomass issued from fermentation industry. I. Equilibrium studies. Sep. Purif. Technol. 2006;52:142-153.   DOI   ScienceOn
40 Yu J, Tong M, Sun X, Li B. Cystine-modified biomass for Cd(II) and Pb(II) biosorption. J. Hazard. Mater. 2007;143: 277-284.   DOI   ScienceOn
41 Saiano F, Ciofalo M, Cacciola SO, Ramirez S. Metal ion adsorption by Phomopsis sp. biomaterial in laboratory experiments and real wastewater treatment. Water Res. 2005:39;2273-2280.   DOI   ScienceOn
42 Deng S, Ting YP. Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res. 2005; 39:2167-2177.   DOI   ScienceOn
43 Tan TW, Cheng P. Biosorption of metal ions with Penicillium chrysogenum. Appl. Biochem. Biotechnol. 2003;104:119-128.   DOI   ScienceOn
44 Tewari N, Vasudevan P, Guha BK. Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem. Eng. J. 2005;23:185-192.   DOI   ScienceOn
45 Mukhopadhyay M, Noronha SB, Suraishkumar GK. Kinetics modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresour. Technol. 2007;98:1781-1787.   DOI   ScienceOn
46 Ajmal M, Rao RAK, Ahmad R, Khan MA. Adsorption studies on Parthenium hysterophorous weed: removal and recovery of Cd(II) from wastewater. J. Hazard. Mater. 2006;135:242-248.   DOI   ScienceOn
47 Herrero R, Lodeiro P, Rey-Castro C, Vilarino T, de Vicente MES. Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Res. 2005;39:3199-3210.   DOI   ScienceOn
48 Suzuki Y, Kametani T, Maruyama T. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent. Water Res. 2005;39:1803-1808.   DOI   ScienceOn
49 Vilar VJP, Botelho CMS, Boaventura RAR. Equilibrium and kinetic modeling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res. 2006;40:291-302.   DOI   ScienceOn
50 Meitei MD, Prasad MNV. Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. J. Environ. Chem. Eng. 2013;1:200-207.   DOI   ScienceOn
51 Solisio C, Lodi A, Soletto D, Converti A. Cadmium biosorption on Spirulina platensis biomass. Bioresour. Technol. 2008;99: 5933-5937.   DOI   ScienceOn
52 Herrero R, Cordero B, Lodeiro P, Rey-Castro C, Sastre de Vicente ME. Interaction of cadmium (II) and protons with dead biomass of marine algae Fucus sp. Marine Chemistry 2006;99:106-116.   DOI   ScienceOn
53 Gupta VK, Rastogi A. Equilibrium and kinetic modeling of cadmium (II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J. Hazardous Materials 2008;153:759-766.   DOI   ScienceOn
54 Chen JP, Yang L. Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. Ind. Eng. Chem. Res. 2005;44:9931-9942.   DOI   ScienceOn
55 Gupta VK, Rastogi A, Saini VK. Jain N. Biosorption of copper (II) from aqueous solutions by algae spirogyra species. J. Colloid Interface Sci. 2006;296:59-63.   DOI   ScienceOn
56 Martins BL, Cruz CCV, Luna AS, Henriques CA. Sorption and desorption of $Pb^{2+}$ ions by dead Sargassum sp. biomass. Biochem. Eng. J. 2006;27:310-314.   DOI   ScienceOn
57 Gupta VK, Rastogi A. Biosorption of lead from aqueous solutions by nonliving algal biomass Oedogonium sp. and Nostoc sp. - a comparative study. Coll. Surfaces B 2008;64:170-178.   DOI   ScienceOn
58 Gupta VK, Rastogi A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Materials. 2008;152:407-414.   DOI   ScienceOn
59 El-Sikaily A, El Nemr A, Khaled A, Abdelwehab O. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J. Hazard. Mater. 2007;148: 216-228.   DOI   ScienceOn
60 Gupta VK, Rastogi A. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J. Hazard. Mater. 2009;163:396-402.   DOI   ScienceOn
61 Gupta VK, Rastogi A. Sorption and desorption studies of chromium (VI) from nonviable cyanobacterium Nostoc muscorum biomass. J. Hazard. Mater. 2008;154:347-354.   DOI   ScienceOn
62 Gupta VK, Srivastava AK, Jain N. Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res. 2001;35:4079-4085.   DOI   ScienceOn
63 Kalyani S, Srinivasa Rao P, Krishnaiah A. Removal of nickel (II) from aqueous solutions using marine macroalgae as the sorbing biomass. Chemosphere 2004;57:1225-1229.   DOI   ScienceOn
64 Boening DW. Ecological effects, transport, and fate of mercury: a general review. Chemosphere 2000;40:1335-1351.   DOI   ScienceOn
65 Celik A, Demirbas A. Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energ. Source. 2005;27:1167-1177.   DOI   ScienceOn
66 International occupational safety and health information centre. Metals. In: Basics of chemical safety, Chapter 7. Geneva: International labour organization (ILO); 1999.
67 Gonzalez AR, Ndung'u K, Flegal AR. Natural occurrence of hexavalent chromium in the Aromas red sands aquifer, California. Environ. Sci. Technol. 2005;39:5505-5511.   DOI   ScienceOn
68 Hetherington LE, Brown TJ, Benham AJ, Lusty PAJ, Idoine NE. World mineral production 2001-2005. Nottingham: Nottingham British Geological Survey; 2007.
69 Forray FL, Hallbauer DK. A study of the pollution of the Aries River (Romania) using capillary electrophoresis as analytical technique. Environ. Geol. 2000;39:1372-1384.   DOI
70 Kotas J, Stasicka Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000;107:263-283.   DOI   ScienceOn
71 World health organization (WHO). Copper in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. 2004.
72 Bishnoi NR, Garima A. Fungus-an alternative for bioremediation of heavy metal containing wastewater: a review. J. Sci. Ind. Res. 2005;64:93-100.
73 Gupta VK, Rastogi A, Nayak A. Biosorption of nickel onto treated alga (Oedogonium hatei): Application of isotherm and kinetic models. J. Colloid Interface Sci. 2010;342:533-539.   DOI   ScienceOn
74 Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M. Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models. J. Hazard. Mater. 2006;133:304-308.   DOI   ScienceOn
75 Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008;26:266-291.   DOI   ScienceOn
76 Sag Y. Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: a review. Separ. Purif. Reviews 2001;30:1-48.   DOI   ScienceOn
77 Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 2006;24:427-451.   DOI   ScienceOn
78 McHale AP, McHale S. Microbial biosorption of metals: potential in the treatment of metal pollution. Biotechnol. Adv. 1994;12:647-652.   DOI   ScienceOn
79 Gupta R, Mohapatra H. Microbial biomass: an economical alternative for removal of heavy metals from waste water. Indian J. Exp. Biol. 2003;41:945-966.
80 Wilde EW, Benemann JR. Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 1993;11:781-812.   DOI   ScienceOn
81 Mehta SK, Gaur JP. Use of algae for removing heavy metals ions from wastewater: progress and prospects. Crit. Rev. Biotechnol. 2005;25:113-152.   DOI   ScienceOn
82 Wingenfelder U, Hansen C, Furrer G, Schulin R. Removal of heavy metals from mine water by natural zeolites. Environ. Sci. Technol. 2005;39:4606-4613.   DOI   ScienceOn
83 Juttner K, Galla U, Schmieder H, Electrochemical approaches to environmental problems in the process industry. Electrochim. Acta 2000;45:2575-2594.   DOI   ScienceOn
84 Yang XJ, Fane AG, McNaughton S. Removal and recovery of heavy metals from wastewater by supported liquid membranes. Water Sci. Technol. 2001;43:341-348.
85 Bose P, Bose MA, Kumar S. Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc, and cyanide. Adv. Environ. Res. 2002;7:179-195.   DOI   ScienceOn
86 Dobrevsky I, Todorova-Dimova M, Panayotova T. Electroplating rinse wastewater treatment by ion exchange. Desalination 1997;108:277-280.   DOI   ScienceOn
87 Korngold E, Belayev N, Aronov L. Removal of chromates from drinking water by anion exchangers. Sep. Purif. Technol. 2003;33:179-187.   DOI   ScienceOn
88 Ahmed S, Chughtai S, Keane MA. The removal of cadmium and lead from aqueous solution by ion exchange with Na-Y zeolite. Sep. Purif. Technol. 1998;13:57-64.   DOI   ScienceOn
89 Cheng RC, Liang S, Wang HC, Beuhler MD. Enhanced coagulation for arsenic removal. J. Am. Water Works Assoc. 1994;86: 79-90.
90 Edwards M. Chemistry of arsenic removal during coagulation and Fe-Mn oxidation. J. Am. Water Works Assoc. 1994;86:64-78.
91 Wang LK, Fahey EM, Wu ZC. Dissolved air flotation. In: Wang LK, Hung YT, Shammas NK, eds. Physicochemical treatment processes. New Jersey: Humana Press; 2004. p. 431-500.
92 Gerente C, Lee VKC, Le Cloirec P, MaKay G. Application of chitosan for the removal of metals from wastewaters by adsorption - mechanisms and models review. Crit. Rev. Environ. Sci. Technol. 2007;37:41-127.   DOI   ScienceOn
93 Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA. Biosorption with algae: a statistical review. Cri. Rev. Biotechnol. 2006;26:223-235.   DOI   ScienceOn
94 Shukla A, Zhang YH, Dubey P, Margrave JL, Shukla SS. The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater. 2002;95:137-152.   DOI   ScienceOn
95 Crini G. Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 2006;97:1061-1085.   DOI   ScienceOn
96 Suhas P, CarrottMR. Lignin-from natural adsorbent to activated carbon: a review. Bioresour. Technol. 2007;98:2301-2312.   DOI   ScienceOn
97 Foo KY, Hameed BH. Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Adv. Coll. Inter. Sci. 2009;152:39-47.   DOI   ScienceOn
98 Farooq U, Kozinski JA, Khan MA, Athar M. Biosorption of heavy metal ions using wheat based biosorbents - A review of the recent literature. Bioresour. Technol. 2010;101:5043-5053.   DOI   ScienceOn
99 Demirbas A. Heavy metal adsorption onto agrobased waste materials: a review. J. Hazard. Mater. 2008;157:220-229.   DOI   ScienceOn
100 Johnson TA, Jain N, Joshi HC, Prasad S. Agricultural and agro-processing wastes as low cost adsorbents for metal removal from wastewater: a review. J. Sci. Ind. Res. 2008;67: 647-658.
101 Sud D, Mahajan G, Kaur MP. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review. Bioresour. Technol. 2008;99: 6017-6027.   DOI   ScienceOn
102 Dabrowski A. Adsorption - from theory to practice. Adv. Colloid Int. Sci. 2001;93:135-224.   DOI   ScienceOn
103 Matis KA, Zouboulis AI, Gallios GP, Erwe T, Blocher C. Application of flotation for the separation of metal-loaded zeolite Chemosphere 2004;55:65-72.   DOI   ScienceOn
104 Chakravarti AK, Chowdhury SB, Chakrabarty S, Chakrabarty T, Mukherjee DC. Liquid membrane multiple emulsion process of chromium(VI) separation from wastewaters. Colloids Surf. A Physicochem. Eng. Aspects. 1995;103:59-71.   DOI   ScienceOn
105 Kongsricharoern N, Polprasert C. Chromium removal by a bipolar electrochemical precipitation process. Water Sci. Technol. 1996;34:109-116.
106 Volesky B. Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 2001;59:203-216.   DOI   ScienceOn
107 Aksu Z. Application of biosorption for the removal of organic pollutants: a review. Process Biochem. 2005;40:997-1026.   DOI   ScienceOn
108 Stasinakis AS, Thomaidis NS. Fate and biotransformation of metal and metalloid species in biological wastewater treatment processes. Crit. Rev. Environ. Sci. Technol. 2010;40:307-364.   DOI   ScienceOn
109 Tsezos M. Biosorption of metals. The experience accumulated and the outlook for technology development. Hydrometallurgy 2001;59:241-243.   DOI   ScienceOn
110 Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour. Technol. 2007;98:2243-2257.   DOI   ScienceOn
111 Ahemad M, Malik A. Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriology J. 2011;2:12-21.
112 Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy 1997;44:301-316.   DOI   ScienceOn
113 Ioannidou O, Zabaniotou A. Agricultural residues as precursors for activated carbon production-a review. Renew. Sust. Energ. Rev. 2007;11:1966-2005.   DOI   ScienceOn
114 Ngah WS Wan, Hanafiah MAKM. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008;99:3935-3948.   DOI   ScienceOn
115 O'Connell DW, Birkinshaw C, O'Dwyer TF. Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour. Technol. 2008;99:6709-6724.   DOI   ScienceOn
116 Lesmana SO, Febriana N, Soetaredjo FE, Sunarso J, Ismadji S. Studies on potential applications of biomass for the separation of heavy metals. Biochem. Eng. J. 2009;44:19-41.   DOI   ScienceOn
117 Ahmedna M, Marshall WE, Rao RM. Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresour. Technol. 2000;71:113-123.   DOI   ScienceOn
118 Rahman IA, Ismail J, Osman H. Effect of nitric acid digestion on organic materials and silica in rice husk. J. Mater. Chem. 1997;7:1505-1509.   DOI   ScienceOn
119 Lawther JM, Sun R, Banks WB. Extraction, fractionation and characterization of structural polysaccharides from wheat straw. J. Agric. Food Chem. 1995;43:667-675.   DOI   ScienceOn
120 Basso MC, Cerrella EG, Cukierman AL. Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Chem. Res. 2002;41:3580-3585.
121 Qaiser S, Saleemi AR, Ahmad MM. Heavy metal uptake by agro based waste materials. Electron. J. Biotechnol. 2007;10: 409-416.
122 Volesky B. Removal and recovery of heavy metals by biosorption. In: Volesky B, eds. Biosorption of heavy metals. Boca Raton: CRC press; 1990. p. 8-43.
123 Volesky, B. Biosorption and me. Water Res. 2007;41:4017-4029.   DOI   ScienceOn
124 Volesky B, Holan ZR. Biosorption of heavy metals. Biotechnol. Prog. 1995;11:235-250.   DOI   ScienceOn
125 Volesky B. Introduction. In: Volesky B, eds. Biosorption of heavy metals. Boca Raton: CRC press; 1990. p. 3-5.
126 Volesky B. Advances in biosorption of metals: selection of biomass types. FEMS Microbiol. Rev. 1994;14:291-302.   DOI
127 Ajmal M, Rao RAK, Anwar S, Ahamad J, Ahmad R. Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresour. Technol. 2003;86:147-149.   DOI   ScienceOn
128 Akhtar M, Iqbal S, Kausar A, Bhanger MI, Shaheen MA. An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk. Colloids Surf. B Biointerfaces 2010;75:149-155.   DOI   ScienceOn
129 Ye H, Zhu Q, Du D. Adsorptive removal of Cd(II) from aqueous solution using natural and modified rice husk. Bioresour. Technol. 2010;101:5175-5179.   DOI   ScienceOn
130 Kumar U, Bandyopadhyay M. Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour. Technol. 2006;97:104-109.   DOI   ScienceOn
131 El-Shafey EI. Sorption of Cd(II) and Se(IV) from aqueous solution using modified rice husk. J. Hazard. Mater. 2007;147: 546-555.   DOI   ScienceOn
132 Zulkali MMD, Ahmad AL, Norulakmal NH. Oryza sativa L. husk as heavy metal adsorbent: optimization with lead as model solution. Bioresour. Technol. 2006;97:21-25.   DOI   ScienceOn
133 Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003;37:4311-4330.   DOI   ScienceOn
134 Acemioglu B, Alma MH. Equilibrium studies on adsorption of Cu(II) from aqueous solution onto cellulose. J. Colloid Interface Sci. 2001;243:81-84.   DOI   ScienceOn
135 Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009;27:195-226.   DOI   ScienceOn
136 Fourest E, Roux JC. Heavy metal biosorption by fungal mycelial by-product, mechanisms and influence of pH. Appl. Microbiol. Biotechnol. 1992;37:399-403.   DOI
137 Gupta VK, Nayak A, Bhushan B, Agarwal S. A critical analysis on the efficiency of activated carbons from low-cost precursors for heavy metals remediation. Crit. Rev. Environ. Sci. Tech. 2015;45:613-668.   DOI   ScienceOn
138 Kapoor A, Viraraghavan T. Fungal biosorption - an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour. Technol. 1995;53:195-206.
139 Vieira RHSF, Volesky B. Biosorption: a solution to pollution? Int. Microbiol. 2000;3:17-24.
140 Argun ME, Dursun S, Karatas M. Removal of Cd(II), Pb(II), Cu(II) and Ni(II) from water using modified pine bark. Desalination 2009;249:519-527.   DOI   ScienceOn
141 Afkhami A, Madrakian T, Karimi Z, Amini A. Effect of treatment of carbon cloth with sodium hydroxide solution on its adsorption capacity for the adsorption of some cations. Colloids Surf. A 2007;304:36-40.   DOI   ScienceOn
142 Nasir MH, Nadeem R, Akhtar K, Hanif MA, Khalid AM. Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for lead(II) and zinc(II) removal from aqueous solutions. J. Hazard. Mater. 2007;147:1006-1014.   DOI   ScienceOn
143 Nouri L, Ghodbane I, Hamdaoui O, Chiha M. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J. Hazard. Mater. 2007;149:115-125.   DOI   ScienceOn
144 Nouri L, Hamdaoui O. Ultrasonication-assisted sorption of cadmium from aqueous phase by wheat bran. J. Phys. Chem. A 2007;111:8456-8463.   DOI   ScienceOn
145 Farooq U, Khan MA, Athar M, Kozinski JA. Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium (II) ions from aqueous solution. Chem. Eng. J. 2011;171:400-410.   DOI   ScienceOn
146 Verma B, Shukla NP. Removal of nickel (II) from electroplating industry by agrowaste carbons. Indian J. Environ. Health 2000;42:145-150.
147 Dang VBH, Doan HD, Dang-Vu T, Lohi A. Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresour. Technol. 2009;100:211-219.   DOI   ScienceOn
148 Tan G, Xiao D. Adsorption of cadmium ion from aqueous solution by ground wheat stems. J. Hazard. Mater. 2009;164:1359-1363.   DOI   ScienceOn
149 Pino GH, Mesquita LMS, Torem ML, Pinto GASP. Biosorption of cadmium by green coconut shell powder. Miner. Eng. 2006;19:380-387.   DOI   ScienceOn
150 Kadirvelu K, Namasivayam C. Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd(II) from aqueous solution. Adv. Environ. Res. 2003;7:471-478.   DOI   ScienceOn
151 Ho YS, Ofomaja AE. Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochem. Eng. J. 2006;30:117-123.   DOI   ScienceOn
152 Danish M, Hashim R, Ibrahim MNM, et al. Sorption of copper(II) and nickel(II) ions from aqueous solutions using calcium oxide activated date (Phoenix dactylifera) stone carbon: equilibrium, kinetic, and thermodynamic studies. J. Chem. Eng. Data 2011;56:3607-3619.
153 Ngah WSW, Hanafiah MAKM. Biosorption of copper ions from dilute aqueous solutions on base treatedrubber (Hevea brasiliensis) leaves powder: kinetics, isotherm, and biosorption mechanisms. J. Environ. Sci. 2008;20:1168-1176.   DOI   ScienceOn
154 Xie R, Wang H, Chen Y, Jiang W. Walnut shell-based activated carbon with excellent copper(II) adsorption and lower chromium(VI) removal prepared by acid-base modification. Environ. Prog. Sustain. Energy 2013;32:688-696.   DOI   ScienceOn
155 Memon SQ, Memon N, Shah SW, Khuhawar MY, Bhanger MI. Sawdust-A green and economical sorbent for the removal of cadmium(II) ions. J. Hazard. Mater. 2007;139:116-121.   DOI   ScienceOn
156 Lalhruaitluanga H, Prasad MNV, Radha K. Potential of chemically activated and raw charcoals of Melocanna baccifera for removal of Ni(II) and Zn(II) from aqueous solutions. Desalination 2011;271:301-308.   DOI   ScienceOn
157 El-Hendawy ANA. Influence of $HNO_{3}$ oxidation on the structure and adsorptive properties of corncob based activated carbon. Carbon 2003;41:713-722.   DOI   ScienceOn
158 Shah J, Jan MR, Haq A, Sadia M. Biosorption of cadmium from aqueous solution using mulberry wood sawdust: equilibrium and kinetic studies. Sep. Sci. Tech. 2011;46:1631-1637.   DOI   ScienceOn
159 Taty-Costodes VC, Fauduet H, Porte C, Delacroix A. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 2003;105: 121-142.   DOI   ScienceOn
160 Sha L, Xueyi G, Ningchuan F, Qinghua T. Adsorption of $Cu^{2+}$ and $Cd^{2+}$ from aqueous solution by mercapto-acetic acid modified orange peel. Colloids Surf. B Biointerfaces 2009;73:10-14.   DOI   ScienceOn
161 Iqbal M, Saeed A, Zafar SI. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of $Cd^{2+}$ and $Pb^{2+}$ removal by mango peel waste. J. Hazard. Mater. 2009;164: 161-171.   DOI   ScienceOn
162 Memon JR, Memon SQ, Bhanger MI, Zuhra Memon G, El-Turki A, Allen GC. Characterization of banana peel by scanning electron microscopy and FT-IR spectroscopy and its use for cadmium removal. Colloids Surf. B Biointerfaces 2008;66:260-265.   DOI   ScienceOn
163 Anwar J, Shafique U, Waheed-uz-Zaman, Salman M, Dar A, Anwar S. Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresour. Technol. 2010;101:1752-1755.   DOI   ScienceOn
164 Saikaew W, Kaewsarn P, Saikaew W. Pomelo peel: agricultural waste for biosorption of cadmium ions from aqueous solutions. World Acad. Sci. Eng. Technol. 2009;56:287-291.
165 Kahraman S, Dogan N, Erdemoglu S. Use of various agricultural wastes for the removal of heavy metal ions. Inter. J. Environ. Pollut. 2008;34:275-284.   DOI   ScienceOn
166 Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 2010;184:126-134.   DOI   ScienceOn
167 Cay S, Uyanik A, Ozas A. Single and binary component adsorption of copper (II) and cadmium(II) from aqueous solutions using tea-industry waste. Sep. Purif. Technol. 2004;38: 273-280.   DOI   ScienceOn
168 Oshima T, Kondo K, Ohto K, Inoue K, Baba Y. Preparation of phosphorylated bacterial cellulose as an adsorbent for metal ions. React. Funct. Polym. 2008;68:376-383.   DOI   ScienceOn
169 Chauhan GS, Jaswal SC, Verma M. Post functionalization of carboxymethylated starch and acrylonitrile based networks through amidoximation for use as ion sorbents. Carbohydr. Polym. 2006;66:435-443.   DOI   ScienceOn
170 Saliba R, Gauthier H, Gauthier R, Petit-Ramel M. Adsorption of copper (II) and chromium (III) Ions onto amidoximated cellulose. J. Appl. Polym. Sci. 2000;75:1624-1631.   DOI
171 Navarro R, Bierbrauer K, Giangos C, Goiti E, Reinecke H. Modification of poly (vinyl chloride) with new aromatic thiol compounds. Synthesis and characterization. Polym. Degrad. Stab. 2008;93:585-591.   DOI   ScienceOn
172 Li FT, Yang H, Zhao Y, Xu R. Novel modified pectin for heavy metal adsorption. Chin. Chem. Lett. 2007;18:325-328.   DOI   ScienceOn
173 Pushpamalar V, Langford SJ, Ahmad M, Lim YY. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr. Polym. 2006;64:312-318.   DOI   ScienceOn
174 Chauhan GS, Chauhan K, Chauhan S, Kumar S, Kumari A. Functionalization of pine needles by carboxymethylation and network formation for use as supports in the adsorption of $Cr^{6+}$. Carbohydr. Polym. 2007;70:415-421.   DOI   ScienceOn
175 Wang J. Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem. 2002;37:847-850.   DOI   ScienceOn
176 Goksungur Y, Uren S, Guvenc U. Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass. Bioresour. Technol. 2005;96:103-109.   DOI   ScienceOn
177 Singh KK, Hasan HS, Talat M, Singh VK, Gangwar SK. Removal of Cr(VI) from aqueous solutions using wheat bran. Chem. Eng. J. 2009;151:113-121.   DOI   ScienceOn
178 Padmini E, Sridhar S. Effect of pH and contact time on the uptake of heavy metals from industrial effluents by Pongamia pinnata Bark. Asian J. Microbiol. Biotechnol. Environ. Sci. 2007;9:187-190.
179 Chen S, Yue Q, Gao B, Xu X. Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue. J. Coll. Interf. Sci. 2010;349:256-264.   DOI   ScienceOn
180 Farajzadeh MA, Monji AB. Adsorption characteristic of wheat bran towards heavy metal cations. Separ. Pur. Tech. 2004;38: 197-207.   DOI   ScienceOn
181 Wang XS, Chen LF, Li FY, Chen KL, Wan WY, Tang YJ. Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance. J. Hazard. Mater. 2010;175:816-822.   DOI   ScienceOn
182 Memon JR, Memon SQ, Bhanger MI, El-Turki, A, Hallam KR, Allen GC. Banana peel: a green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater. Colloids Surf. B Biointerfaces 2009;70:232-237.   DOI   ScienceOn
183 Babel S, Kurniawan TA. Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere 2004;54:951-967.   DOI   ScienceOn
184 Anandkumar J, Mandal B. Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent. J. Hazard. Mater. 2009;168:633-640.   DOI   ScienceOn
185 Dubey SP, Gopal K. Adsorption of chromium (VI) on low cost adsorbents derived from agricultural waste material: a comparative study. J. Hazard. Mater. 2007;145:465-470.   DOI   ScienceOn
186 Isobea N, Chen X, Kim U-Z, et al. TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J. Hazard. Mater. 2013;260:195-201.   DOI   ScienceOn
187 Rincon J, Gonzalez F, Ballester A, Blazquez ML, Munoz JA. Biosorption of heavy metals by chemically-activated alga Fucus vesiculosus. J. Chem. Technol. Biotechnol. 2005;80: 1403-1407.   DOI   ScienceOn
188 Gupta VK, Agarwal S, Singh P, Pathania D. Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions. Carbohydr. Polym. 2013;98:1214-1221.   DOI   ScienceOn
189 Anirudhan TS, Sreekumari SS, Jalajamony S. An investigation into the adsorption of thorium(IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose. J. Environ. Radioactivity 2013;116:141-147.   DOI   ScienceOn
190 Shuaiyang W, Huiling L, Junli R, Chuanfu L, Feng P, Runcang S. Preparation of xylan citrate-A potential adsorbent for industrial wastewater treatment. Carbohydr. Polym. 2013;92: 1960-1965.   DOI   ScienceOn
191 Grey M, Marchetti V, Clement A, Loubinoux B, Gerardin P. Decontamination of synthetic solutions containing heavy metals using chemically modified sawdusts bearing polyacrylic acid chains. J. Wood Sci.200;46:331-333.   DOI   ScienceOn
192 Saliba R, Gauthier H, Gauthier R. Adsorption of heavy metal ions on virgin and chemically-modified lignocellulosic materials. Ads. Sci. Technol. 2005;23:313-322.   DOI   ScienceOn
193 Shibi IG, Anirudhan TS. Synthesis, characterisation, and application as a mercury(II) sorbent of banana stalk (Musa paradisiaca)- polyacrylamide grafted copolymer bearing carboxyl groups. Ind. Eng. Chem. Res. 2002;41:5341-5352.   DOI   ScienceOn
194 Wang XS, Li ZZ, Sun C. A comparative study of removal of Cu(II) from aqueous solutions by locally low-cost materials: marine macroalgae and agricultural by-products. Desalination 2009;235:146-159.   DOI   ScienceOn
195 Pehlivan E, Altun T. Biosorption of chromium (VI) ion from aqueous solutions using walnut, hazelnut and almond shell. J. Hazard. Mater. 2008;155:378-384.   DOI   ScienceOn
196 Sarin V, Pant KK. Removal of chromium from industrial waste by using eucalyptus bark. Bioresour. Technol. 2006;97:15-20.   DOI   ScienceOn
197 Basci N, Kocadagistan E, Kocadagistan B. Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination 2004;164:135-140.   DOI   ScienceOn
198 Dupont L, Bouanda J, Dumonceau J, Aplincourt M. Biosorption of Cu(II) and Zn(II) onto a lignocellulosic substrate extracted from wheat bran. Environ. Chem. Lett. 2005;2:165-168.   DOI
199 Aydin H, Bulut Y, Yerlikaya C. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manag. 2008;87:37-45.   DOI   ScienceOn
200 Ozer A, Ozer D, Ozer A.The adsorption of copper (II) ions on to dehydrate wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem. 2004;39:2183-2191.   DOI   ScienceOn
201 Quek SY, Wase DAJ, Forster CF. The use of sago waste for the sorption of lead and copper. Water Sa. 1998;24:251-256.
202 Wong KK, Lee CK, Low KS, Haron MJ. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 2003;50:23-28.   DOI   ScienceOn
203 Moreno-Pirajan JC, Giraldo L. Activated carbon obtained by pyrolysis of potato peel for the removal of heavy metal copper (II) from aqueous solutions. J. Anal. Appl. Pyrolysis. 2011;90:42-47.   DOI   ScienceOn
204 Maldhure AV, Ekhe JD. Preparation and characterizations of microwave assisted activated carbons from industrial waste lignin for Cu(II) sorption. Chem. Eng. J. 2011;168:1103-1111.   DOI   ScienceOn
205 Deng S, Ting YP. Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu (II) and Cd(II) biosorption. Langmuir 2005;21:5940-5948.   DOI   ScienceOn
206 Errasquin EL, Vazquez C. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 2003;50:137-143.   DOI   ScienceOn
207 Hesas RH, Daud WMAW, Sahu JN, Niya AA. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. J. Anal. App. Pyrolysis. 2013;100:1-11.   DOI   ScienceOn
208 Foo KY, Hameed BH. Preparation and characterization of activated carbon from sunflower seed oil residue via microwave assisted $K_{2}CO_{3}$ activation. Bioresour. Technol. 2011;102: 9794-9799.   DOI   ScienceOn
209 Foo KY, Hameed BH. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbons via microwave assisted $K_{2}CO_{3}$ activation. Bioresour. Technol. 2012;104:679-686.   DOI   ScienceOn
210 Anirudhan TS, Sreekumari SS. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 2011;23:1989-1998.   DOI   ScienceOn
211 Gautam RK, Mudhoo A, Lofrano G, Chattopadhyay MC. Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration. J. Environ. Chem. Eng. 2014;2:239-259.   DOI   ScienceOn
212 Volesky B, Naja G. Biosorption: application strategies. In: 16th International Biohydrometallurgy Symposium; 2005 Sep 25-29; Cape Town, South Africa.
213 Mohammad M, Maitra S, Ahmad N, Bustam A, Sen TK, Dutta BK. Metal ion removalfrom aqueous solution using physic seed hull. J. Hazard. Mater. 2010;179:363-372.   DOI   ScienceOn
214 Iqbal M, Saeed A, Kalim I. Characterization of adsorptive capacity and investigation of mechanism of $Cu^{2+}$, $Ni^{2+}$ and $Zn^{2+}$ adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Sep. Sci. Technol. 2009;44:3770-3791.   DOI   ScienceOn
215 Zhu CS, Wang LP, Chen W. Removal of Cu(II) from aqueous solution by agricultural by-product: peanut hull. J. Hazard. Mater. 2009;168:739-746.   DOI   ScienceOn
216 Johnson PD, Watson MA, Brown J, Jefcoat IA. Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater. Waste Manag. 2002;22:471-480.   DOI   ScienceOn
217 Yao ZY, Qi JH, Wang LH. Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. J. Hazard. Mater. 2010;174:137-143.   DOI   ScienceOn
218 Vazquez G, Calvo M, Freire MS, Gonzalez-Alvarez J, Antorrena G. Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal. J. Hazard. Mater. 2009;172:1402-1414.   DOI   ScienceOn
219 Mohan S, Sumitha K. Removal of Cu (II) by Adsorption Using Casuarina Equisetifolia Bark. Environ. Eng. Sci. 2008;25:497-506.   DOI   ScienceOn
220 Oo CW, Kassim MJ, Pizzi A. Characterization and performance of Rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper(II) and lead(II). Ind. Crops Prod. 2009;30:152-161.   DOI   ScienceOn
221 Amarasinghe BMWPK, Williams RA. Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 2007;132:299-309.   DOI   ScienceOn
222 Park D, Yun YS, Park JM. The Past, Present, and Future Trends of Biosorption. Biotechnol. Bioprocess Eng. 2010;15:86-102.   DOI   ScienceOn
223 Garnham GW. The use of algae as metal biosorbents. In: Wase J, Forster C, eds. Biosorbents for metal ions. London, UK: CRC Press; 1997. p. 11-37.