• Title/Summary/Keyword: total glucosinolates

Search Result 49, Processing Time 0.027 seconds

Comparative analysis of active components and antioxidant activities of Brussels sprouts (Brassica oleracea var. gemmifera) and cabbage (Brassica oleracea var. capitata)

  • Kwan Woo Jeon;Min Gun Kim;Su Hyeong Heo;Kyung Hwan Boo;Jae-Hoon Kim;Chang Sook Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.413-419
    • /
    • 2022
  • The applicability of Brussels sprouts, which are widely cultivated in Jeju, as a functional biomaterial in the cosmetics and food industries is investigated. The active ingredients (total phenols and flavonoids, β-carotene, vitamin C, free sugar, minerals, glucosinolates, and isothiocyanates) and antioxidant activities of 70% ethanol extracts of Brussels sprouts and cabbage were analyzed. The total phenol, flavonoid, vitamin C, and β-carotene contents of Brussels sprouts were approximately 36%, 2.5 times, 2.3 times, and 65% higher than those of cabbage, respectively. The total free sugar content of Brussels sprouts was 58%-72% lower than that of cabbage. The K content was the highest among the other minerals, and there was little difference between the two samples. The Na content was approximately three times higher in cabbage than in Brussels sprouts. The total glucosinolate content of Brussels sprouts was 34.5 mol SE/g DW, twice that of cabbage. The sinigrin content of Brussels sprouts was thrice (10.06 μmol/g DW) that of cabbage. The isothiocyanate (sulforaphane, I3C) content in Brussels sprouts was double that of cabbage. The antioxidant activity of Brussels sprout extract was 2.5 to 2.8 times higher in 1,1-Diphenyl-2-picrylhydrazyl radical scavenging capacity and 3.3 to 3.6 times higher in 2,2'-Azino-bis(3-ethybenzothiazoline-6-sulfonic acid) radical scavenging capacity than those of cabbage extract. These are important basic data for the study of glucosinolates and isothiocyanates, which have anticancer activity, as well as antioxidant-related substances of Brussels sprout, which has high potential for use as a biomaterial in functional foods and cosmetics.

Variations of glucosinolates in kale leaves (Brassica oleracea var. acephala) treated with drought-stress in autumn and spring seasons (수분스트레스에 의한 케일 내 글루코시놀레이트 변화)

  • Jeong, Na-Rae;Chun, Jin-Hyuk;Park, Eun-Jae;Lim, Ye-Hoon;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.167-175
    • /
    • 2015
  • The present study aimed to investigate the effects of drought stress on the accumulation of glucosinolates (GSLs) in the leaves of Kale cultivated in autumn and spring. HPLC analysis guided to identify seven GSLs including progoitrin, glucoraphanin, sinigrin, gluconapin, glucobrassicin, 4-methoxyglucobrassicin and neoglucobrasscin. Quantification of GSLs revealed that the contents of sigirin was the highest (45%) followed by the level of progoitrin (24%) in terms of total GSLs. The ranges of total GSL contents was 1.16 (84)-15.88 (89 DAS, ${\mu}mol/g$ dry wt. (DW)) in treatment plot and 1.23 (84)-7.05 (74 DAS, ${\mu}mol/g$ dry wt.) in control plot showed the enhancement in the contents of GSLs in treatment than in the control plot. The present results evidenced that the variation of total GSL contents were depending on the harvest period. In 105 DAS, comparatively no differences in the GSL contents on each sample in autumn season, whereas in spring season, although there was decrease in the GSLs tendency from 74 DAS to 84 DAS in both control and treatment plot, the GSL contents of treatment plot was dramatically increased in 89 DAS. In treatment plot, the GSL contents on 89 DAS (1.16) was 15 fold higher to 84 DAS ($15.88{\mu}mol/g$ DW). The variation in the contents of GSL in spring and autumn did not documented significant differences because of their differences in the growth time and cultivation conditions. In conclusion, the GSL contents in kale was likely to be affected by drought stress treatment. Scrutiny and further research for exact relation between drought stress and GSL contents in kale should be needed.

Determination of Bioactive Compounds and Anti-cancer Effect from Extracts of Korean Cabbage and Cabbage (배추와 양배추 추출물의 생리활성 물질 및 암세포 증식 억제효과 분석)

  • Hwang, Eun-Sun;Hong, Eun-Young;Kim, Gun-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.2
    • /
    • pp.259-265
    • /
    • 2012
  • In this study, we determined total polyphenol content(TPC) and total flavonoid content(TFC) of extracts from Korean cabbage and cabbage using a spectrophotometric method as well as glucosinolates concentration by HPLC. TPCs of Korean cabbage and cabbage extracts were 308.48 ${\mu}g$ GAE/g dry weight and 344.75 ${\mu}g$ GAE/g dry weight, respectively. TFCs of Korean cabbage and cabbage extracts were 5.33 ${\mu}g$ QE/g dry weight and 5.95 ${\mu}g$ QE/g dry weight, respectively. We found six different glucosinolates, namely progoitrin, glucoalyssin, gluconapin, glucobrassicanapin, glucobrassicin and 4-methoxyglucobrassicin in the Korean cabbage extract. In the cabbage extract, there was four glucosinolates, namely glucoraphanin, sinigrin, glucobrassicin and 4-methoxyglucobrassicin. We determined the cytotoxic effect of Korean cabbage and cabbage extracts in AGS human stomach cancer cells, HepG2 human hepatic cancer cells and LNCaP human prostate cancer cells by MTT assay. Dose-dependent relationships were found between the extract concentrations and cancer cell growth inhibition. The overall results support that both Korean cabbage and cabbage, the major vegetables in Korea, contain bioactive compounds such as polypheol, flavonoids as well as glucosinolates and they may play a positive role in cancer prevention.

Quantitative analysis of glucosinolates and thermal degradation product of indole glucosinolates in radish (무의 glucosinolate와 indole glucosinolate 열분해산물의 함량분석)

  • Shim, Ki-Hwan;Kang, Kap-Suk;Ahn, Cheol-Woo;Seo, Kwon-Il
    • Applied Biological Chemistry
    • /
    • v.36 no.1
    • /
    • pp.23-28
    • /
    • 1993
  • Glucosinolates from radish (Wangkwan, Daejangkun, Taebaek, Daebooryeung and No. 364) and its seed (Wangkwan) were identified, and their degradation product by heat treatment was analyzed. The Wangkwan variety contained much more types of glucosinolates than other radish varieties. Total glucosinolate contents of Wangkwan, Daejangkun, Taebaek, Daebooryeung, No. 354 and Wangkwan seed by GC method were 1.25, 1.10, 0.97, 0.96, 0.90 and 2.14 ${\mu}mole/g$, respectively. The indoleacetonitrile contents after 20 minutes' heat treatment at $100^{\circ}C$ from Wangkwan, Daejangkun, Taebaek, Daebooryeung, No. 364 and Wangkwan seed were 0.28, 0.20, 0.23, 0.21, 0.24 and 0.58 ${\mu}mole/g$, respectively. The heat treatment increased the thiocyanate ion contents in radish and its seed, and the contents were maximum at 30 min.

  • PDF

Effect of Different Nutrient Solution and Light Quality on Growth and Glucosinolate Contents of Watercress in Hydroponics (배양액의 종류 및 광질이 물냉이의 생육 및 Glucosinolate 함량에 미치는 영향)

  • Choi, Jae Yun;Kim, Sung Jin;Bok, Kwon Jeong;Lee, Kwang Ya;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.371-380
    • /
    • 2018
  • Aim of this study was to investigate the effects of different nutrient solutions and various light qualities generated by LED on the growth and glucosinolates contents of watercress (Nasturtium officinale) grown under hydroponics for 3 weeks. The seeds of watercress were sown on crushed rockwool media and raised them for two weeks. They were transplanted in a semi-DFT (deep flow technique) hydroponics system. A controlled-environment room was maintained at $20{\pm}1^{\circ}C$ and $16{\pm}1^{\circ}C$ temperatures and $65{\pm}10%$ and $75{\pm}10%$ relative humidity (day and night, respectively), with a provided photosynthetic photon flux density (PPFD) of $180{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and a photoperiod of 16/8h. To find out the best kinds of nutrient solutions for growing watercress, Otsuka House 1A (OTS), Horticultural Experiment Station in Korea (HES), and Netherland's Proefstaion voor Bloemisterij en Gasgroente (PBG) were adapted with initial EC of $1.0-1.3dS{\cdot}m^{-1}$ and pH of 6.2, irradiating PPFD with fluorescent lamps (Ex-1). Either monochromatic (W10 and R10) or mixed LEDs (R5B1, R3B1, R2B1G1, and W2B1G1) were irradiated with a differing ratio of each LED's PPFD to understanding light quality on the growth and glucosinolates contents of watercress (Ex-2). Although significant difference in the shoot growth of watercress was not found among three nutrient solutions treatments, but the root fresh weight increased by 13.7% and 55.1% in PBG and OTS compared to HES, respectively. OTS increased the gluconasturtiin content by 96% and 65% compared to PBG and HES. Compared with the white light (W10), the red light (R10) showed a 101.3% increase in the shoot length of watercress. Increasing blue light portion positively affected plant growth. The content of total glucosinolates in watercress was increased by 144.5% and 70% per unit dry weight in R3B1 treatment compared with R2B1G1 and W10 treatments, respectively. The growth and total glucosinolates contents of the watercress were highest under R3B1 among six light qualities.

Heat Shock Treatments Induce the Accumulation of Phytochemicals in Kale Sprouts (열처리에 의한 케일 새싹의 기능성물질 축적)

  • Lee, Min-Jeong;Lim, Sooyeon;Kim, Jongkee;Oh, Myung-Min
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.509-518
    • /
    • 2012
  • The objective of this study was to determine the effect of heat shock treatments on the phytochemicals including antioxidants and anticancer materials in kale (Brassica oleracea L. var. acephala) sprouts. In study I, kale sprouts grown under the growing system for four days were soaked at 40, 50, or $60^{\circ}C$ distilled water for 10, 30, or 60 seconds, and in study II, kale sprouts were soaked at $50^{\circ}C$ distilled water for 10, 20, 30, 45, or 60 seconds. After the heat shock treatments, the sprouts were transferred into normal growing conditions and recovered there for two days. Fresh and dry weights, electrolyte leakage, total phenolic concentration, antioxidant capacity, total flavonoid concentration, phenylalanine ammonia-lyase (PAL) activity, and glucosinolates content of the sprouts were measured before and after the heat shock treatments. As a result, there was a significant decrease in the fresh and dry weight of kale sprouts treated with heat shock compared with control at harvest in study I. Especially, heat shock at $60^{\circ}C$ lead to more pronounced growth inhibition compared with heat treatments at 40 and $50^{\circ}C$. Electrolyte leakage by cell collapse was the highest in the sprouts exposed to $60^{\circ}C$ distilled water, which agreed with the growth results. Heat shock at $50^{\circ}C$ significantly induced the accumulation of phenolic compounds. In study II, fresh weight of kale sprouts at $50^{\circ}C$ heat shock showed a significant decrease compared with the control at one and two days after the treatment. However, the decrease was minimal and dry weight of kale sprouts was not significantly different from that in control. In contrast, the heat shock-treated kale sprouts had higher level of total phenolic concentration than control at harvest. Heat shock treatments at $50^{\circ}C$ for 20 seconds or more showed at least 1.5 and 1.2 times higher total phenolic concentration and antioxidants capacity than control, respectively. The change of the total flavonoid concentration was similar with that of antioxidants. PAL activity after 24 hours of heat shock was higher in all the heat shock-treated sprouts than that in control suggesting heat shock may stimulate secondary metabolic pathway in kale sprouts. Seven glucosinolates were identified in kale sprouts and soaking the sprouts with $50^{\circ}C$ water for 20 seconds had a pronounced impact on the accumulation of total glucosinolates as well as two major glucosinolates, progoitrin and sinigrin, at harvest. In conclusion, this study suggests that heat shock using hot water would be a potential strategy to improve nutritional quality of kale sprouts by inducing the accumulation of phytochemicals with antioxidant and anticancer properties.

Physicochemical characteristics and antioxidant activity of kimchi during fermentation (발효 단계별 김치의 이화학적 특성 및 항산화 활성)

  • Ji Myung Choi;Eun Ju Cho;Hyun Young Kim;Ah Young Lee;Jine Shang Choi
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.321-327
    • /
    • 2022
  • In the present study, we investigated the physicochemical characteristics and antioxidant activity of kimchi during the fermentation process. Kimchi was fermented at 18.5 ℃, then after one day, the storage temperature was changed to 5 ℃ without fresh kimchi (Fresh; pH 5.6, total acidity 0.3%), which obtained optimum-ripened kimchi (OptR; pH 4.3, total acidity 0.64%), and over-ripened kimchi (OvR; pH 3.8, total acidity 1.24%). As a result, the glucosinolates content of the kimchi was increased during the fermentation process. Among the glucosinolates, glucoraphanin possesses the highest amounts in kimchi. In addition, the contents of sulforaphane and total polyphenol, which are common antioxidant compounds, were increased during the fermentation process. To evaluate the antioxidant activities of Fresh, OptR, and OvR, we measured 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (·OH) radicals radical scavenging activity in vitro. Fresh, OptR, and OvR exerted DPPH and ·OH radical scavenging activities dose-dependently. In particular, the ·OH radical scavenging activities of OptR and OvR were higher than that of Fresh. Therefore, we suggest that kimchi at the ripe and over-ripe stage is considered to have high antioxidant activity by increasing glucosinolate, sulforaphane, and total polyphenols, compared with fresh kimchi.

Identification and Quantification of Glucosinolates in Rapeseed (Brassica napus L.) Sprouts Cultivated under Dark and Light Conditions

  • Lee, Min-Ki;Arasu, Mariadhas Valan;Chun, Jin-Hyuk;Seo, Jeong Min;Lee, Ki-Teak;Hong, Soon-Taek;Kim, In Ho;Lee, Yong-Hwa;Jang, Young-Seok;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • BACKGROUND: This study was performed for the identification and quantification of glucosinolate (GSL) contents in seven varieties of rapeseed (Brassica napus L.) sprouts cultivated under dark and light conditions. METHODS AND RESULTS: Crude glucosinolates (GSLs) were desulfated by treating with aryl sulfatase and purified using diethylaminoethyl sepharose (DEAE) anion exchange column. Individual GSLs were quantified using high-performance liquid chromatography (HPLC) with electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Eleven GSLs including six aliphatic (progoitrin, sinigrin, glucoalyssin, gluconapoleiferin, gluconapin, and glucobrassicanapin), four indolyl (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin) and one aromatic (gluconasturtiin) were identified based on the fragmentation patterns of MS spectrum. Aliphatic GSLs were noted as the predominant group with average 85.2% of the total contents. The most abundant GSLs were progoitrin which was ranged at $8.14-118.68{\mu}mol/g$ dry weight (DW). The highest total GSL amounts were documented in 'Hanra' ($146.02{\mu}mol/g$ DW) under light condition and 'Mokpo No. 68' ($86.67{\mu}mol/g$ DW) in dark condition, whereas the lowest was in 'Tamra' (30.13 and $14.50{\mu}mol/g$ DW) in both conditions. The sum of aliphatic GSLs attributed > 80% in all varieties, except 'Tamra' (67.7% and 64.9% in dark and light conditions, respectively) in the total GSL accumulation. Indolyl GSLs were ranged $2.41-15.73{\mu}mol/g$ DW, accounted 2.78-33.6% of the total GSLs in rapeseed varieties. CONCLUSION(S): These results provide valuable information regarding potential beneficial GSL contents individually. This study attempts to contribute to knowledge of the nutritional properties of the different varieties of rapeseed plants. These results may be useful for the evaluation of dietary information.

Metabolic profiling reveals an increase in stress-related metabolites in Arabidopsis thaliana exposed to honeybees

  • Baek, Seung-A;Kim, Kil Won;Kim, Ja Ock;Kim, Tae Jin;Ahn, Soon Kil;Choi, Jaehyuk;Kim, Jinho;Ahn, Jaegyoon;Kim, Jae Kwang
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.141-151
    • /
    • 2021
  • Insects affect crop harvest yield and quality, making plant response mechanisms to insect herbivores a heavily studied topic. However, analysis of plant responses to honeybees is rare. In this study, comprehensive metabolic profiling of Arabidopsis thaliana exposed to honeybees was performed to investigate which metabolites were changed by the insect. A total of 85 metabolites-including chlorophylls, carotenoids, glucosinolates, policosanols, tocopherols, phytosterols, β-amyrin, amino acids, organic acids, sugars, and starch-were identified using high performance liquid chromatography, gas chromatography-mass spectrometry, and gas chromatography-time-of-flight mass spectrometry. The metabolite profiling analysis of Arabidopsis exposed to honeybees showed higher levels of stress-related metabolites. The levels of glucosinolates (glucoraphanin, 4-methoxyglucobrassicin), policosanols (eicosanol, docosanol, tricosanol, tetracosanol), tocopherols (β-tocopherol, γ-tocopherol), putrescine, lysine, and sugars (arabinose, fructose, glucose, mannitol, mannose, raffinose) in Arabidopsis exposed to honeybees were higher than those in unexposed Arabidopsis. Glucosinolates act as defensive compounds against herbivores; policosanols are components of plant waxes; tocopherols act as an antioxidant; and putrescine, lysine, and sugars contribute to stress regulation. Our results suggest that Arabidopsis perceives honeybees as a stress and changes its metabolites to overcome the stress. This is the first step to determining how Arabidopsis reacts to exposure to honeybees.

Comparison of the microbial and nutritional quality characteristics in radish sprouts by purchasing time (무 새싹채소의 구매시기에 따른 미생물 및 영양학적 품질특성 비교)

  • Park, Jin Ju;Yang, Hye Jeong;Han, Kyu-Jai;Lim, Jeong-Ho
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 2015
  • This study investigated the microbiological and nutritional characteristics of bimonthly radish sprouts purchased at a local market. The total bacteria and coliform measurements were highest in summer (June and August) and lowest in winter (February and December). The total phenol content was $16.82{\pm}0.69GAEmg/g$, and it did not significantly differ during the investigation period. The total carotenoid contents were highest in February (about $12.81{\pm}0.49$ ${\beta}$-carotene mg/g) and lowest in April (about $8.09{\pm}1.01$ ${\beta}$-carotene mg/g). However although total glucosinolates content differ between the total crude glucosinolate and the sum of the individual glucosinolates, it was highest in December. The individual glucosinolates were found to have been gucoraphenin, glucoerucin, glucobrassicin and gluconasturtiin in radish sprouts via HPLC analysis. The purchasing time of the glucoraphenin content did not significantly differ. The measured glucoerucin was highest in February and lowest in October. The gucobrassicin and gluconasturtiin were higher in summer than in winter, but did not significantly differ. The antioxidant activity (i.e., the $IC_{50}$ values of the DPPH radical scavenging) was highest in February. In conclusion, the microbial contamination, total carotenoids, and antioxidant activity changed according to the purchasing season, but the total phenolic compounds and total glucosinolates were maintained regardless of the time in the radish sprouts.