Browse > Article
http://dx.doi.org/10.3839/jabc.2022.053

Comparative analysis of active components and antioxidant activities of Brussels sprouts (Brassica oleracea var. gemmifera) and cabbage (Brassica oleracea var. capitata)  

Kwan Woo Jeon (Jeju Residual Pesticide Analysis Center, Jeju National University)
Min Gun Kim (Faculty of Biotechnology, Jeju National University)
Su Hyeong Heo (Faculty of Biotechnology, Jeju National University)
Kyung Hwan Boo (Jeju Residual Pesticide Analysis Center, Jeju National University)
Jae-Hoon Kim (Faculty of Biotechnology, Jeju National University)
Chang Sook Kim (Jeju Residual Pesticide Analysis Center, Jeju National University)
Publication Information
Journal of Applied Biological Chemistry / v.65, no.4, 2022 , pp. 413-419 More about this Journal
Abstract
The applicability of Brussels sprouts, which are widely cultivated in Jeju, as a functional biomaterial in the cosmetics and food industries is investigated. The active ingredients (total phenols and flavonoids, β-carotene, vitamin C, free sugar, minerals, glucosinolates, and isothiocyanates) and antioxidant activities of 70% ethanol extracts of Brussels sprouts and cabbage were analyzed. The total phenol, flavonoid, vitamin C, and β-carotene contents of Brussels sprouts were approximately 36%, 2.5 times, 2.3 times, and 65% higher than those of cabbage, respectively. The total free sugar content of Brussels sprouts was 58%-72% lower than that of cabbage. The K content was the highest among the other minerals, and there was little difference between the two samples. The Na content was approximately three times higher in cabbage than in Brussels sprouts. The total glucosinolate content of Brussels sprouts was 34.5 mol SE/g DW, twice that of cabbage. The sinigrin content of Brussels sprouts was thrice (10.06 μmol/g DW) that of cabbage. The isothiocyanate (sulforaphane, I3C) content in Brussels sprouts was double that of cabbage. The antioxidant activity of Brussels sprout extract was 2.5 to 2.8 times higher in 1,1-Diphenyl-2-picrylhydrazyl radical scavenging capacity and 3.3 to 3.6 times higher in 2,2'-Azino-bis(3-ethybenzothiazoline-6-sulfonic acid) radical scavenging capacity than those of cabbage extract. These are important basic data for the study of glucosinolates and isothiocyanates, which have anticancer activity, as well as antioxidant-related substances of Brussels sprout, which has high potential for use as a biomaterial in functional foods and cosmetics.
Keywords
Antioxidant-activity; Brussel sprouts; Glucosinolates; Isothiocyanates; Total phenols;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crop of Brassica oleracea. J Agric Food Chem 47(4): 1541-1548. doi: 10.1021/jf980985s   DOI
2 KW Jeon, MG Kim, JH Park, Kim CS (2021) Changes of qualities and active components of new carrot cultivar 'Tamnahong' according to different harvest time. J Korean Soc Food Sci Nutr 50(10): 1101-1107. doi: 10.3746/jkfn.2021.50.10.1101   DOI
3 Folin O, Denis W (1912) On phosphotungstic-phosphomolyddic compounds as color reagents. J Biol Chem 12: 239-243. doi: 10.1016/S0021-9258(18)88697-5   DOI
4 Moreno MIN, Isla MI, Sampietro AR, Vattuone WA (2000) Comparison of the free radical-scavenging activity of propolis from several region of argentina. J Ethnopharmacol 71: 109-114. doi: 10.1016/S0378-8741(99)00189-0   DOI
5 Oh HJ, Back JW, Lee JY, Oh YJ, Lim SB (2013) Quality characteristics of jelly added with pressed kiwi (Actinidia chinensis var. 'Halla Gold') juices. Korean J Culinary Research 19: 110-120
6 AOAC (1984) Official Methods of Analysis. 14th ed. Association of Official Analytical Chemists, Washington, DC, USA, p 878
7 Mawlong I, Kumar MSS, Gurung B, Singh KH, Singh D (2017) A simple spectrophotometric methods for estimating total glucosinolates in mustard de-oiled cake. Int J Food Prop 20: 3274-3281. doi: 10.1080/10942912.2017.1286353   DOI
8 Kim SJ, Kawaharada C, Jin S, Hashimoto M, Ishi G, Yamauchi H (2007) Structural elucidation of 4-(cytein-S-yl)butyl glucosinolate from the leaves of Eruca sativa. Biosci Biotechol Biochem 71: 114-121   DOI
9 International Organization of Standardization (1992) Rapeseed-Determination of Glucosinolates Content, Part 1: Method Using High Performance Liquid Chromatography, ISO 9167-1: 1992 (E): International Organization of Standardization: Geneva, Switzwerland
10 Kim HY, Ediriweera MK, Boo KH, Kim CS, Cho SK (2021) Effects of cooking and processing methods on phenolic contents and antioxidant and anti-proliferative activities of broccoli florets. Antioxidants 10: 641. doi: 10.3390/antiox10050641   DOI
11 Heo SH, Boo KH, Han SH, Park SS, Kim CS (2021) Changes in physicochemical properties and biological activities of kohlrabi (Brassica oleracea var. gongylodes) according to storage conditions. J Korean Soc Food Sci Nutr 50(7): 1699-1706
12 Sun J, Chu YF, We X, Liu RH (2002) Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50: 7449-7454. doi: 10.1021/jf0207530   DOI
13 Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2: 270-278. doi: 10.4161/oxim.2.5.9498   DOI
14 Kim DO, Padilla-Zakour OI, Griffiths PD (2004) Flavonoids and antioxidant capacity of various cabbage genotypes at juvenile stage. J Food Sci 69: C685-C689. doi: 10.1111/j.1365-2621.2004.tb09916.x   DOI
15 Jaiswal AK, Abu-Ghannam N, Gupta S (2012) A comparative study on the polypenolic content, antibacterial activity and antioxidant capacity of different solvent extracts of Brassica oleracia vegetables. Int J Food Sci 47(2): 223-231. doi: 10.1111/j.1365-2621.2011.02829.x   DOI
16 Podsedek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci Technol 40: 1-11. doi: 10.1016/j.lwt.2005.07.023   DOI
17 Podsedek A, Sosnowsk D, Redzynia M, Anders B (2006) Antioxidant capacity and content of Brassica oleracea dietary antioxidants. Int J Food Sci Technol 41: 49-58. doi: 10.1111/j.1365-2621.2006.01260.x   DOI
18 Elzbieta S, Ewa C, Teresa L, Agnieszka F, Pawel P (2008) The antioxidant activity of selected cruciferous vegetables subjected to aquathermal processing. Food Chem 107: 55-59. doi: 10.1016/j.foodchem.2007.07.023   DOI
19 Hwang ES (2019) Effect of cooking methods on bioactive compound contents and antioxidant activities of Brussels sprouts. J Korean Soc Food Sci Nutr 48(10): 1061-1069   DOI
20 Combs MH, Ernst M (2019) Brussels sprouts. University of Kentucky College of Agriculture, Food And Environment. http://www.uky.edu/ccd/sites/www.uky.edu.ccd/files/brusselssprouts.pdf
21 Mun W, Kim JG, Lee JW (2014) Cabbage and vegetable. In Horticulture Crop Science I. Mun W, Kim JG, Lee JW, eds. Korea National Open University Publishing, Seoul, Korea. p 355
22 Cao G, Sofic E, Prior R (1996) Antioxidant activity of tea and common vegetables. J Agric Food Chem 44: 3426-3431. doi: 10.1021/jf9602535   DOI
23 Kurilich AC, Tsau GJ, Brown A, Howard L, Klein BP, Jeffery EH, Kushad M, Wallig MA, Juvik JA (1999) Carotene, tocopherol, and ascorbate contents in subspecies of Brassica oleracea. J Agri Food Chem 47: 1576-1581. doi: 10.1021/jf9810158   DOI
24 van Poppel G, Verhoeven DT, Verhagen H, Goldbohm RA (1999) Brassica vegetables and cancer prevention. Epidemiology and mechanism. Adv Exp Med Biol 472: 159-168   DOI
25 Becker TM, Juvik JA (2016) The role of glucosinolate hydrolysis products from Brassica vegetable consumption in inducing antioxidant activity and reducing cancer incidence. Diseases 4:22. doi: 10.3390/diseases4020022   DOI
26 Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem 56: 5-51. doi: 10.1016/S0031-9422(00)00316-2   DOI
27 Rosa EAS, Heaney RK, Portas CAM, Fenwick GR (1996) Changes in glucosinolate concentration in Brassica crops (B. oleracea and B. napus) throughout growing seasons. J Sci Food Agric 71:237-244. doi: 10.1002/(SICI)1097-0010(199606)71:2<237::AID-JSFA574>3.0.CO;2-P   DOI
28 Fenwick GR, Griffiths NM, Heaney RK (1983) Bitterness in Brussels sprouts (Brassica oleracea L. var. gemmifera): the role of 126 glucosinolates and their breakdown products. J Sci Food Agric 34: 73-80. doi: 10.1002/jsfa.2740340111   DOI
29 Rosa E, David M, Gomes MH (2001) Glucose, fructose and sucrose content in broccoli, white cabbage and Portuguese cabbage grown in early and late seasons. J Sci Food Agri 81: 1145-1149. doi: 10.1002/jsfa.919   DOI
30 Hwang ES, Hong E, Kim GH (2012) Determination of bioactive compounds and anti-cancer effects from extracts of Korean cabbage and cabbage. Korean J Food & Nutr 25(2): 259-265. doi: 10.9799/ksfan.2012.25.2.259   DOI
31 Rungapamestry V, Duncan Aj, Fuller Z, Ratcliffe B (2007) Effects of cooking brassica vegetables on the subsequent hydrolysis and metabolic fate of glucosinolates. Proc Nutr Sco 66: 69-81   DOI
32 Cole R (1983) Isothiocyanates, nitriles and thiocyanates and products of autolysis of glucosinolates in cruciferae. Phytochem 15: 759-762. doi: 10.1016/S0031-9422(00)94437-6   DOI
33 Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proc. Natl Acad Sci. USA 89: 2399-2403. doi: 10.1073/pnas.89.6.2399   DOI
34 Fahey JW, Haristory X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay PT, Lozniewski A (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a] pyrene-induced stomach tumors. Proc Natl Acad Sci USA 99: 7610-7615. doi: 10.1073/pnas.112203099   DOI
35 Smith TK, Mithen R, Johnson IT (2003) Effects of brassica vegetables juice on the induction of apoptosis and aberrant crypt foci in rat colonic mucosal crypts in vivo. Carcinogenesis 24: 491-495. doi: 10.1093/carcin/24.3.491   DOI
36 Anagnostopoulou MA, Kefalas P, Papageorgiou VP, Assimopoulou AN, Boskou D (2006) Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem 94: 19-25. doi: 10.1016/j.foodchem.2004.09.047    DOI
37 Williams DE (2021) Indoles derived from glucobrassicin: cancer chemoprevention by indole-3-carbinol and 3,3'-diindolylmethane. Front Nutr 8: 734334. doi: 10.3389/fnut.2021.734334   DOI
38 Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical action decolorization assay. Free Radic Biol Med 26: 1231-1237. doi: 10.1016/S0891-5849(98)00315-3   DOI