• Title/Summary/Keyword: total ginsenoside

Search Result 368, Processing Time 0.026 seconds

Physicochemical Properties and Composition of Ginsenosides in Red Ginseng Extract as Revealed by Subcritical Water Extraction (아임계수 추출에 의한 홍삼 추출물의 진세노사이드 조성 및 이화학적 특성)

  • Lee, Joo-Mi;Ko, Min-Jung;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.757-764
    • /
    • 2015
  • Red ginseng was treated by subcritical water extraction (SWE) whose two parameters were the extraction temperature ($105-150^{\circ}C$) and time (5-20 min) under a high pressure. The oBrix value, solid content, color difference, and turbidity of the red ginseng extract increased with increasing extraction time and temperature, while the pH decreased. The total concentration of ginsenosides in the red ginseng extract was maximal at $120^{\circ}C$ and 20 min. The concentrations of ginsenosides Rg3 and Rh1 were maximal at $150^{\circ}C$ and 15 min. The concentrations of Rg3 and Rh1 were respectively 3.5-5 times and 2-2.5 times higher than those treated by conventional extraction methods with hot water, ethanol, and methanol. SWE is a particularly effective method for the selective extraction of less-polar ginsenosides such as Rg3 which is well known to exert strong anticancer effects.

Effect of Barrel Temperature and Screw Speed on Characteristics of Extruded Raw Ginseng (배럴온도와 스크루 회전속도에 따른 압출성형 수삼의 특성)

  • Ha, Dae-Cherl;Lee, Jong-Won;Kim, Na-Mi;Ryu, Gi-Hyung
    • Journal of Ginseng Research
    • /
    • v.29 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • The objective of this study was to determine effects of the die temperature(100 and $120^{\circ}C$) and screw speed(200 and 300 rpm) on the characteristics of extruded raw ginseng such as crude saponin, ginsenosides, maltol and the color of powder. Crude saponin content increased after extrusion-cooking. Ginsenoside $Rg_1\;and\;Rg_2$ that contained in red ginseng increased from 0.2275 mg/g to 0.2835 mg/g$(Rg_l)$ and 0.1164 mg/g to 0.2230 mg/g$(Rg_2)$ with the increase in die temperature from 100 to $120^{\circ}C$, which increased with the decrease in screw speed from 300 to 200 rpm. Maltol, specific component in red ginseng was detected in extruded ginseng. Total sugar content was not changed by extrusion process, however reducing sugar decreased with the increase in die temperature from 100 to $120^{\circ}C$. In conclusion extrusion process can be applied to red ginseng manufacturing by controling extrusion process variables such as extrusion temperature and screw speed.

Qualitative and quantitative analysis of the saponins in Panax notoginseng leaves using ultra-performance liquid chromatography coupled with time-of-flight tandem mass spectrometry and high performance liquid chromatography coupled with UV detector

  • Liu, Fang;Ma, Ni;He, Chengwei;Hu, Yuanjia;Li, Peng;Chen, Meiwan;Su, Huanxing;Wan, Jian-Bo
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.149-157
    • /
    • 2018
  • Background: Panax notoginseng leaves (PNL) exhibit extensive activities, but few analytical methods have been established to exclusively determine the dammarane triterpene saponins in PNL. Methods: Ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC/Q-TOF MS) and HPLC-UV methods were developed for the qualitative and quantitative analysis of ginsenosides in PNL, respectively. Results: Extraction conditions, including solvents and extraction methods, were optimized, which showed that ginsenosides Rc and Rb3, the main components of PNL, are transformed to notoginsenosides Fe and Fd, respectively, in the presence of water, by removing a glucose residue from position C-3 via possible enzymatic hydrolysis. A total of 57 saponins were identified in the methanolic extract of PNL by UPLC/Q-TOF MS. Among them, 19 components were unambiguously characterized by their reference substances. Additionally, seven saponins of PNL-ginsenosides Rb1, Rc, Rb2, and Rb3, and notoginsenosides Fc, Fe, and Fd-were quantified using the HPLC-UV method after extraction with methanol. The separation of analytes, particularly the separation of notoginsenoside Fc and ginsenoside Rc, was achieved on a Zorbax ODS C8 column at a temperature of $35^{\circ}C$. This developed HPLC-UV method provides an adequate linearity ($r^2$ > 0.999), repeatability (relative standard deviation, RSD < 2.98%), and inter- and intraday variations (RSD < 4.40%) with recovery (98.7-106.1%) of seven saponins concerned. This validated method was also conducted to determine seven components in 10 batches of PNL. Conclusion: These findings are beneficial to the quality control of PNL and its relevant products.

Drying Rate and Physicochemical Characteristics of Dried Ginseng Root at Different Temperature (열풍건조온도에 따른 수삼건조속도 및 건조수삼의 이화학적 특성)

  • 하대철;이종원;도재호;박채규;류기형
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.741-746
    • /
    • 2004
  • Drying of raw ginseng root down to 35% moisture content required for extrusion process. There were two kinds of pre-treatments of raw ginseng root which were chopping and whole-root ginseng before frying at 80, 100 and 12$0^{\circ}C$. Drying rate and physicochemical properties of dried ginseng were evaluated to determine optimum drying temperature for extrusion process. Drying time at 8$0^{\circ}C$ to decrease to 35% moisture was 6.5 hr and ginsenoside content in dried ginseng at 8$0^{\circ}C$ was lower than that of dried ginseng at 100 and 12$0^{\circ}C$. Drying time at 100 and 12$0^{\circ}C$ to decrease to 35% moisture was 5.5 and 3.5 hr and redness of dried ginseng powder was 5.20 and 7.23 respectively. Browness and redness of dried ginseng extract from 75% ethylene were significantly increased with the increase in drying temperature. Ginsenosides Rb1, Rb2, Rc, Rd, Rg1 and total saponin were also increased with the increase in drying temperature from 8$0^{\circ}C$ to 10$0^{\circ}C$, however, those were not significantly different with drying temperature at 100 and 12$0^{\circ}C$. Drying temperature for extrusion process can be optimal at 10$0^{\circ}C$.

Overexpression of Farnesyl Diphosphate Synthase by Introducing CaFPS Gene in Panax ginseng C. A. Mey. (인삼에서 Farnesyl Diphosphate Synthase 과발현이 진세노사이드 생합성에 미치는 영향)

  • Park, Hong Woo;Kim, Ok Tae;Hyun, Dong Yun;Kim, Yong Bum;Kim, Jang Uk;Kim, Young Chang;Bang, Kyong Hwan;Cha, Seon Woo;Choi, Jae Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.1
    • /
    • pp.32-38
    • /
    • 2013
  • FPS (farnesyl diphosphate synthase) plays an essential role in organ development in plants. However, FPS has not previously been identified as a key regulatory enzyme in triterpene biosynthesis. In order to investigate the effect of FPS on ginsenosides biosynthesis, we over-expressed FPS of Centella asiatica (CaFPS) in Panax giseng adventitious roots. PCR analysis showed the integrations of the CaFPS and hygromycin phosphotransferase genes and we ultimately selected three lines. The result of Southern blot analysis demonstrated the introduction of the CaFPS gene into genome of ginseng. In addition, the results of RT-PCR analysis revealed that CaFPS gene overexpression induced an accumulation of its transcription in the ginseng adventitious roots. To determine whether or not the overexpression of the CaFPS gene contributes to the downstream gene expression associated with triterpene biosynthesis, the level of mRNAs was analyzed by real-time PCR. The result showed that no differences were detected in any expression of all genes. To determine quantitatively the content of ginsenosides in transgenic ginseng adventitious roots, HPLC analysis was conducted. The content of total 7 ginsenosides was increased to 1.8, 1.4, and 1.7 times than that of the controls, respectively. This indicated that the overexpression of CaFPS in ginseng adventitious roots causes an increase in ginsenoside content, although down stream genes of FPS gene were suppressed by CaFPS overexpression.

Effect of Seed Position on Seed Size, Contents of Ginsenosides, Free Sugars and Fatty Acids in Panax ginseng (종자의 착생위치가 인삼종자의 크기, 사포닌, 유리당 및 지방산함량에 미치는 영향)

  • 이종철;안대진;변정수;장진규;황건중
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.3
    • /
    • pp.330-335
    • /
    • 1987
  • This study was carried out to know the effect of seed position on the size, contents of ginsenosides, free sugars, and fatty acids in ginseng seeds. Seed positions were classified by the three portions as center, middle and border in a seed cluster. Seed weight at center was light remarkably in comparison with those of seeds of at border and middle. The weight of embryo plus endosperm was in same tendency as seed weight. Percentage of single-seeded berry was smaller than that of the double-seeded, and the triple-seeded was rare. The percentage of the single-seeded increased from the border to the center. Size of the single -seeded seed was smaller than that of the double- seeded. Rate of dehiscence did not differ among different seed positions. The major ginsenosides in seed were Re, Rb$_1$, and Rb$_2$. The contents of Rb$_2$ and total saponin were highest in border, least in center, but reversed in Re and Rd. Major free sugars in seed were sucrose and glucose. The sucrose content was gradually decreased according to the seed position from border to center. Major fatty acids in the seed were oleic and linoleic acid. Contents of palmitic and linolenic acid were different according to the seed position.

  • PDF

Manufacture of the Red Ginseng Vinegar Fermented with Red Ginseng Concentrate and Rice Wine, and its Quality Evaluation (홍삼 농축액과 쌀막걸리의 동시 발효를 통한 홍삼 식초의 제조 및 품질평가)

  • Kim, Dong-Kuk;Baik, Moo-Yeul;Kim, Hae-Kyung;Hahm, Young-Tae;Kim, Byung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.179-184
    • /
    • 2012
  • The objectives of this study were to manufacture the red ginseng vinegar based on rice wine and red ginseng concentrate (RGC) using $Acetobacter$ $aceti$ and to evaluate its quality with remaining crude saponin contents and sensory score. The maximum prosapogenin (ginsenoside-Rh1, Rh2, Rg2, and Rg3) content in RGC regarding ginseng was obtained from such processes as steaming, drying, and extraction. When RGC was added into a rice wine in the range of 0-1% before acetic fermentation, pH decreased slowly during 20 days depending on RGC contents, but total acidity was not dependent on RGC contents. Compared to the crude saponin content (71.75 mg/g) of ginseng vinegar added RGC after acetic fermentation, the fermentation with RGC produced a lower crude saponin content (16.95 mg/g) in red ginseng vinegar. Sensory scores such as odor, taste, and overall preference, however, vinegar fermented with RGC were higher than those of vinegar added RGC after acetic fermentation.

Changes in Growth, Active Ingredients, and Rheological Properties of Greenhouse-cultivated Ginseng Sprout during its Growth Period (하우스에서 재배된 새싹인삼의 재배시기별 생육, 유효성분 및 물성의 변화)

  • Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Lee, Hee Chul;Kwon, A Reum;Kim, Hyun Ho;Won, Jun Yeon;Lee, Ka Soon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.2
    • /
    • pp.126-135
    • /
    • 2019
  • Background: The ginseng ginsenosides, which have various physiological activities, are known to be more abundant in the leaves than in the roots, and the consumers' interest in ginseng sprout as a functional vegetable has been increasing. Methods and Results: The aim of this study was to investigate the effects of growth period on growth properties, active ingredients and rheology of ginseng sprouts cultivated in a non-heated greenhouse equipped with a shade net for 60 days, starting from the end of May to the middle of July. The chlorophyll content of the leaves decreased, but their length and width increased with increasing cultivation days. In particular, growth increased significantly until 40 days, but only slightly after 50 days. The stem length did not increase greatly from the 20 th to the 30 th day of cultivation, but increased significantly from the 30 th to the 40 th day, and then further increased gradually. The weight of the leaves, stems, and roots increased slightly, but not change significantly. After 40 days of cultivation, the total ginsenoside content increased by 1.07 times in the leaves and decreased by 0.80 times in the roots with increasing cultivation days. The leaf contents of ginsenosides $Rg_1$, Re, $Rb_1$, Rc, $F_3$ and $F_4$ increased with increasing cultivation days. The rheological properties of ginseng sprout showed the greatest influence on stem hardening with increasing cultivation days. Conclusions: Therefore, based on the growth characteristics, active ingredients and physical properties, 40 days after sowing was considered to be an appropriate harvesting time for ginseng sprouts.

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF

Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process (새로운 자동 구증구포방법에 의한 인삼사포닌의 변환 및 이화학적 특성)

  • Jin, Yan;Kim, Yeon-Ju;Jeon, Ji-Na;Wang, Chao;Min, Jin-Woo;Jung, Sun-Young;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.473-481
    • /
    • 2012
  • This study was conducted to investigate the contents of ginsenosides and physiochemical properties of Panax ginseng after 9 times steaming and drying treatment by using the new auto steamer which is more fast and simple than previous report. In the process of steaming and drying, the content of six major ginsenosides such as Rg1, Re, Rb1, Rc, Rb2 and Rd were gradually decreased. On the other hand, the content of seven minor ginsenosides includes Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5 were gradually increased. We observed the protopanxadiol ginsenosides such as Rb1, Rb2, Rc and Rd were converted into 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5; similarly protopanxatriol ginsenosides of Rg1 and Re were converted into Rh1, 20(S)-Rg2 and 20(R)-Rg2. Based on the result of fresh ginseng, the contents of reducing sugar, acidic polysaccharide and total phenolic compounds were gradually increased and reached to maximum at 7 times repetitive steaming process of the fresh ginseng. Whereas DPPH radical scavenging activities were gradually decreased to 68% at 7 times steaming. New auto 9 repetitive steaming and drying process has similar production with original methods, but content of benzo(a)pyrene were not almost detected comparatively taking less time. The present results suggested that this method is best for the development of value-added ginseng industry related products.