DOI QR코드

DOI QR Code

Changes of Ginsenosides and Physiochemical Properties in Ginseng by New 9 Repetitive Steaming and Drying Process

새로운 자동 구증구포방법에 의한 인삼사포닌의 변환 및 이화학적 특성

  • Jin, Yan (Korean Ginseng Center for Most Valuable Product, and Ginseng Resource Bank, Kyung Hee University) ;
  • Kim, Yeon-Ju (Korean Ginseng Center for Most Valuable Product, and Ginseng Resource Bank, Kyung Hee University) ;
  • Jeon, Ji-Na (Korean Ginseng Center for Most Valuable Product, and Ginseng Resource Bank, Kyung Hee University) ;
  • Wang, Chao (Korean Ginseng Center for Most Valuable Product, and Ginseng Resource Bank, Kyung Hee University) ;
  • Min, Jin-Woo (Korean Ginseng Center for Most Valuable Product, and Ginseng Resource Bank, Kyung Hee University) ;
  • Jung, Sun-Young (Korean Ginseng Center for Most Valuable Product, and Ginseng Resource Bank, Kyung Hee University) ;
  • Yang, Deok-Chun (Korean Ginseng Center for Most Valuable Product, and Ginseng Resource Bank, Kyung Hee University)
  • 김염 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 김연주 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 전지나 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 왕초 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 민진우 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 정선영 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행) ;
  • 양덕춘 (경희대학교 고려인삼명품화사업단 및 인삼유전자원소재은행)
  • Received : 2012.07.17
  • Accepted : 2012.08.21
  • Published : 2012.08.29

Abstract

This study was conducted to investigate the contents of ginsenosides and physiochemical properties of Panax ginseng after 9 times steaming and drying treatment by using the new auto steamer which is more fast and simple than previous report. In the process of steaming and drying, the content of six major ginsenosides such as Rg1, Re, Rb1, Rc, Rb2 and Rd were gradually decreased. On the other hand, the content of seven minor ginsenosides includes Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5 were gradually increased. We observed the protopanxadiol ginsenosides such as Rb1, Rb2, Rc and Rd were converted into 20(S)-Rg3, 20(R)-Rg3, Rk1 and Rg5; similarly protopanxatriol ginsenosides of Rg1 and Re were converted into Rh1, 20(S)-Rg2 and 20(R)-Rg2. Based on the result of fresh ginseng, the contents of reducing sugar, acidic polysaccharide and total phenolic compounds were gradually increased and reached to maximum at 7 times repetitive steaming process of the fresh ginseng. Whereas DPPH radical scavenging activities were gradually decreased to 68% at 7 times steaming. New auto 9 repetitive steaming and drying process has similar production with original methods, but content of benzo(a)pyrene were not almost detected comparatively taking less time. The present results suggested that this method is best for the development of value-added ginseng industry related products.

구증구포방법은 기존의 홍삼제조방법에서와 같이 9회 반복 과정으로 새로운 신규사포닌 등 성분변화가 일어나지만 시간이 오래 걸리고 복잡하며 어떤 특수 성분이 얼마나 증가 되는지 보고 되어 있지 않다. 또한 기존의 구증구포방법은 제조공정 중 건조시 보통 $60^{\circ}C$에서 열풍건조를 하기 때문에 건조시 관리의 부족으로 간혹 벤조피렌에 노출되는 경우가 있다. 본 방법은 새로운 자동 구증구포방법으로 제조시간이 약 2배정도 단축되며 특히 건조시 습열냉각건조를 통하기 때문에 벤조피렌함량이 거의 검출되지 않았다. 또한 사포닌 변환 등은 기존 구증구포방법과 같이 사포닌 변화가 일어나 홍삼에서만 나타나는 Rg3와 기타 효능활성물질 등이 분석되었다. 인삼사포닌의 경우에는 증포횟수가 증가함에 따라 흡수가 어려운 major ginsenoside(Rg1, Re, Rb1, Rc, Rb2 및 Rd)의 함량이 점차적으로 감소되고 대신 흡수가 빠르고 항암활성이 강한 minor ginsenoside (Rh1, 20(S)-Rg2, 20(R)-Rg2, 20(S)-Rg3, 20(R)-Rg3, Rk1 및 Rg5)의 함량이 점차적으로 증가하였다. 특히 diol계 사포닌인 ginsenosides Rb1, Rb2, Rc 및 Rd는 Rg3, Rk1 및 Rg5로 전환되었고, triol계 사포닌인 ginsenosides Rg1 및 Re는 Rh1, Rg2로 전환되었다. 수삼에서의 환원당, 산성다당체 및 총 페놀 화합물 함량은 7회까지 유의적으로 증가하였고 8회부터 점차 감소하는 경향을 보였다. DPPH 라디칼 소거활성은 7회까지 점차적으로 감소하여 $IC_{50}$값이 68% 감소되는 것으로 나타났으며 7회부터 9회까지는 큰 유의적 차이가 없었다. 결론적으로 본 자동 구중구포방법은 기존의 방법과 물질생성은 거의 비슷하지만 시간이 단축되고 벤조피렌 함량이 거의 검출되지 않아 앞으로 고부가가치 인삼산업에 많은 도움을 줄 것으로 생각된다.

Keywords

References

  1. Agency for Toxic Substances and Disease Registry(ATSDR). 1995. Toxicological profile for polycyclic aromatic hydrocarbons(PAHs). U.S. Department of Health and Human Services, Public Health Service.
  2. Blois, M.S. 1958. Antioxidant activity determination by the use of a stable free radical. Nature 181:1199-1200. https://doi.org/10.1038/1811199a0
  3. Cheng L.Q., M.K. Kim, J.W. Lee, Y.J. Lee and D.C. Yang. 2006. Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett. 28:1121-1127. https://doi.org/10.1007/s10529-006-9059-x
  4. Chung, Y.S., Y.H. Chang and J.H. Sung. 2006. The effect of ginseng and caffeine products on the antioxidative activities of mouse kidney. J. Ginseng Res. 30(1):15-21 (in Korean). https://doi.org/10.5142/JGR.2006.30.1.015
  5. Ha, D.C. and G.H. Ryu. 2005. Chemical components of red, white and extruded root ginseng. J. Korean Soc. Food Sci. Nutr. 34(2):247-254 (in Korean). https://doi.org/10.3746/jkfn.2005.34.2.247
  6. Han, B.H., Y.N. Han and M.H. Park. 1985. Chemical and biochemical studies on the antioxidant components of ginseng. Advances in Chinese medicinal materials research. World Scientific Publishing, Singapore. pp. 485-498.
  7. Hikino, H.,Y. Oshima, Y. Suzuki and C. Konno. 1985. Isolation and hypoglycemic activity of Panaxans F, G and H, glycans of Panax ginseng roots. Shoyakugaku Zasshi 39(4):331-333.
  8. Jay, H.L., J.B. Wiliam, B. Franco, F. Robert, R.G. Charles, K. Michael, S. Dietrich and V. Giuseppe. 1984. Patterns of lung cancer risk according to type of cigarette smoked. Int. J. Cancer 33:569-576. https://doi.org/10.1002/ijc.2910330504
  9. Kim, D.W., Y.J. Kim, Y.J. Lee, J.W. Min, S.Y. Kim and D.C. Yang. 2008. Conversion of ginsenosides by 9 repetitive steaming and dryings process of Korean ginseng root and its inhibition of BACE-1 activity. Korean J. Oriental Physiology & Pathology 22(6):1557-1561 (in Korean).
  10. Kim, H.J., J.Y. Lee, B.R. You, H.R Kim, J.E Choi, K.Y. Nam, B.D. Moon and M.R. Kim. 2011. Antioxidant activities of ethanol extracts from black ginseng prepared by steamingdrying cycles. J. Korean Soc. Food Sci. Nutr. 40(2):156-162. https://doi.org/10.3746/jkfn.2011.40.2.156
  11. Kim, S.N. 2008. Study on ginsenoside patterns on the steam processing of Korean ginseng and hypoglycemic action on streptozotocin induced diabetic rats of 9 time-steamings ginseng. Ph. D Dissertation. Joongbu University, Chungnam, Korea (in Korean).
  12. Korea Food & Drug Administration. 2010. Korean Food Standard Codex 10:48-51.
  13. Kulkarmi, M.C. and M.W. Anderson. 1984. Persistence of benzo(a)pyrene metabolite: DNA adducts in lung and liver of mice. Cancer Res. 44:97-101.
  14. Kwak, Y.S., H.J. Shin, Y.B. Song, J.S. Kyung, J.J. Wee and J.D. Park. 2005. Effect of oral administration of red ginseng acidic polysaccharide(RGAP) on the tumor growth inhibition. J. Ginseng Res. 29:176-181 (in Korean). https://doi.org/10.5142/JGR.2005.29.4.176
  15. Lee, D.W., H.O. Sohn, H.B. Lim and Y.G. Lee. 1995. Antioxidant action of ginseng: an hypothesis. Korean J. Ginseng Sci. 19(1):31-38 (in Korean).
  16. Lee, S.J., D.W. Park, H.G. Jang, C.Y. Kim, Y.S. Park, T.C. Kim and B.G. Heo. 2006. Total phenol content, electron donating ability and tyrosinase inhibition activity of pear cut branch extract. Kor. J. Hort Sci. Technol. 24:338-342 (in Korean).
  17. Ma, J.Y., C.S. Ha, H.J. Sung and O.P. Zee. 2000. Hemopoietic effects of Rhizoma Rehmanniae Preparata on cyclophosphamideinduced pernicious anemia in rats. Kor. J. Pharmacogn. 31(3):325-334 (in Korean).
  18. Namba, T., M. Yoshizaki, T. Tomimori, K. Kobashi and K. Mitsui. 1974. Chemical and biochemical evaluation of ginseng and related crude drugs. Yakugaku Zasshi 94:252-260. https://doi.org/10.1248/yakushi1947.94.2_252
  19. Nowak, H., K. Kujawa, R. Zadernowski, B. Roczniak and H. KozŁowska. 1992. Antioxidative and bactericidal properties of phenolic compounds in rapeseeds. European J. Lipid Sci. Technol. 94:149-152.
  20. Ogihara Y. and M. Nose. 1986. Novel cleavage of the glycosidic bond of saponins in alcoholic alkali metal solution containing a trace of water. J. Chem. Soc., Chem. Commun. 18:1417-1417.
  21. Okuda, H. 1992. Inhibitory substances in Korean red ginseng toward toxohormones-L: A toxic substance secreted from tumor cells. The Ginseng Review 15:34-37.
  22. Park, C.K., B.S. Jeon and J.W. Yang. 2003. The chemical components of Korean ginseng. Food Industry and Nutrition 8(2):10-23 (in Korean).
  23. Shin, J.E., E.K. Park, E.J. Kim, Y.H. Hong, K.T. Lee and D.H. Kim. 2003. Cytotoxicity of compound K (IH-901) and ginsenoside Rh2, main biotransformants of ginseng saponins by bifidobacteria, against some tumor cells. Ginseng Res. 27:129-134. https://doi.org/10.5142/JGR.2003.27.3.129
  24. Son, H.J. and G.H. Ryu. 2009. Chemical compositions and antioxidant activity of extract from a extruded white ginseng. J. Korean Soc. Food Sci. Nutr. 38:946-950 (in Korean). https://doi.org/10.3746/jkfn.2009.38.7.946
  25. Sun B.S., L.J. Gu, Z.M. Fang, C.Y Wang, Z. Wang, M.R. Lee, Z. Li, J.J. Li and C.K. Sung. 2009. Simultaneous quantification of 19 ginsenosides in black ginseng developed from Panax ginseng by HPLC?ELSD. J. Pharm. Biomed. Anal. 50:15-22. https://doi.org/10.1016/j.jpba.2009.03.025
  26. The Korean society of food science and nutrition. 2000. Handbook of Experiments in Food Science and Nutrition. Hyoil Publishing Co., Seoul, Korea. pp. 151-152.

Cited by

  1. Stimulative Effect of Ginsenosides Rg5:Rk1 on Murine Osteoblastic MC3T3-E1 Cells vol.28, pp.10, 2014, https://doi.org/10.1002/ptr.5146
  2. Analysis of Nutritional Components and Antioxidant Activity of Roasting Wooung (Burdock, Arctium lappa L.) and Jerusalem Artichoke (Helianthus tuberosus L.) vol.29, pp.6, 2016, https://doi.org/10.9799/ksfan.2016.29.6.870
  3. Antioxidant Compounds and Activities of Methanolic Extracts from Steam-Dried Allium hookeri Root vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1725
  4. Changes in the Physicochemical Properties and Sensory Characteristics of Burdock (Arctium lappa) During Repeated Steaming and Drying Procedures vol.47, pp.3, 2015, https://doi.org/10.9721/KJFST.2015.47.3.336
  5. Physicochemical Properties and Antioxidant Activities of Steam-Dried Allium hookeri Root vol.44, pp.3, 2015, https://doi.org/10.3746/jkfn.2015.44.3.412
  6. 금 나노입자를 처리한 홍삼의 산화스트레스 완화 및 PC-12 신경세포 보호 vol.49, pp.2, 2012, https://doi.org/10.9721/kjfst.2017.49.2.222
  7. 국우(菊芋) 증자가 혈당강하작용에 미치는 영향 vol.32, pp.5, 2017, https://doi.org/10.6116/kjh.2017.32.5.39
  8. Variation of main components according to the number of steaming and drying of Rehmanniae radix preparata vol.21, pp.2, 2012, https://doi.org/10.3831/kpi.2018.21.014
  9. Evaluation of phytochemical contents and physiological activity in Panax ginseng sprout during low-temperature aging vol.26, pp.1, 2019, https://doi.org/10.11002/kjfp.2019.26.1.38
  10. 증숙 온도와 시간에 따른 4년근 인삼의 이화학적 특성 vol.27, pp.2, 2019, https://doi.org/10.7783/kjmcs.2019.27.2.86
  11. Variations in Ginsenosides of Raw Ginseng According to Heating Temperature and Time vol.23, pp.2, 2020, https://doi.org/10.3831/kpi.2020.23.012
  12. Effects of steaming and drying processing on Korean rice wine (Makgeolli) with deodeok (Codonopsis lanceolate) vol.53, pp.1, 2012, https://doi.org/10.9721/kjfst.2021.53.1.85
  13. Biofunctional properties of wild cultivated and cultivated Ginseng (Panax ginseng Meyer) extracts obtained using subcritical water extraction vol.56, pp.8, 2021, https://doi.org/10.1080/01496395.2020.1781893