• Title/Summary/Keyword: torsional vibration analysis

Search Result 302, Processing Time 0.021 seconds

Free Vibration Analysis of Parabolic Strip Foundations (포물선형 띠기초의 자유진동 해석)

  • Lee, Tae-Eun;Lee, Jong-Kook;Kang, Hee-Jong;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.703-706
    • /
    • 2005
  • Since soil structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil structure interactions had been carried out. One of typical structures related to the soil structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint this paper aims to theoretically investigate dynamics of the parabolic strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out o plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of free-free end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of nonlinear equation.

  • PDF

Free Vibration Analysis of Circular Strip Foundations (원호형 띠기초의 자유진동 해석)

  • Lee, Jong-Kook;Kang, Hee-Jong;Lee, Byoung-Koo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.898-901
    • /
    • 2004
  • Since soil-structure interactions are one of the most important subjects in the structural/foundation engineering, much study concerning the soil-structure interactions had been carried out. One of typical structures related to the soil-structure interactions is the strip foundation which is basically defined as the beam or strip rested on or supported by the soils. At the present time, lack of studies on dynamic problems related to the strip foundations is still found in the literature. From these viewpoint, this paper aims to theoretically investigate dynamics of the circular strip foundations and also to present the practical engineering data for the design purpose. Differential equations governing the free, out-of-plane vibrations of such strip foundations are derived, in which effects of the rotatory and torsional inertias and also shear deformation are included although the warping of the cross-section is excluded. Governing differential equations subjected to the boundary conditions of corresponding end constraints are numerically solved for obtaining the natural frequencies and mode shapes by using the numerical integration technique and the numerical method of non-linear equation.

  • PDF

Speed Controller Design of a Two-Inertia Motor System Using Weighted ITAE Index (가중 ITAE 지수를 사용한 2관성 모터시스템의 속도제어기 설계)

  • Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.581-589
    • /
    • 2009
  • In a two-inertia motor system with flexible shaft, a torsional vibration is often generated as a quick speed response is required. This vibration makes it difficult to achieve a quick response of speed and disturbance rejection. The objective of this paper is to provide a systematic analysis and design of the three kinds of speed controllers such as I-P, I-PD, and state feedback control by using the weighted ITAE performance index. Some simulation and experiment results verify the effectiveness of the proposed design.

Vehicular Impact Loading on with Laminated Rubber Bearing (탄성받침을 사용한 도로교의 충격하중특성 분석)

  • 김상효;허진영;신용준;이용선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.230-237
    • /
    • 2000
  • The purpose of this study is to evaluate the dynamic behavior of highway bridge due to moving vehicle load, considering the effect of laminated rubber bearing. Dynamic behaviors of bridge considering the effect of bearings are studied with 3-dimensional bridge and vehicle models. To analyze the effect of bearings on the dynamic behaviors of superstructures of bridges, laminated rubber bearing is modeled as 3-dimensional frame element with equivalent stiffness and damping, and the models are included in the bridge analysis model. The results from the analytical models with laminated rubber bearing show a significant effects on dynamic responses and more complex vibration characteristics compared with the results from the bridge with pot bearings. Generally, larger dynamic amplification factors are obtained in the case of laminated rubber bearing, which is mainly due to the smaller torsional stiffness of the bridge with laminated rubber bearing. It can be recommended that were careful consideration on the vibration of bridges and dynamic load allowance in design are needed when adopting laminated rubber bearing.

  • PDF

Acoustic Noise Source Identification and Analysis of Dynamic Characteristics Parameters In BLDC Fan Motor (BLDC Fan Motor의 소음원 규명 및 동특성 분석)

  • Shin, Hyoun-Jeong;Lee, En-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1397-1402
    • /
    • 2013
  • This study researched cause of resonance noise for BLDC motor used in the refrigerator. it is difficult to measure dynamic characteristics for small sized fan & rotor system with conventional excitation method. Therefore this study performed electric exiting method and natural frequency method using microphone instead of conventional excitation and showed validity of these methods. Study result showed that tortional vibration frequency of fan & rotor system and natural bending frequency of the fan were matched with exciting frequency of BLDC motor caused by commutating ripple torque. And this frequency match caused resonance of the system. The study analyzed main parameters of this phenomenon and suggested alternative solution.

Shape Optimization Technique for Thin Walled Beam of Automotive Structures Considering Vibration

  • Lee, Sang-Beom;Yim, Hong-Jae;Pyun, Sung-Don
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2E
    • /
    • pp.63-70
    • /
    • 2002
  • In this paper, an optimization technique for thin walled beams of vehicle body structure is proposed. Stiffness of thin walled beam structure is characterized by the thickness and typical section shape of the beam structure. Approximate functions for the section properties such as area, area moment of inertia, and torsional constant are derived by using the response surface method. The approximate functions can be used for the optimal design of the vehicle body that consists of complicated thin walled beams. A passenger car body structure is optimized to demonstrate the proposed technique.

Forced Vibration Analysis of a Hollow Crankshaft by using Transfer Matrix Method and Finite Element Method (전달 행렬법과 유한요소법을 이용한 중공 크랭크축의 강제 진동 해석)

  • 김관주;최진욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.44-52
    • /
    • 1997
  • As part of the effort to reduce the weight of powertrain, a hollow crankshaft has been designed. The mass reduction of the crankshaft changes the dynamic properties of the crankshaft such as moment of inertia, and torsional, bending stiffness. The purpose of this paper is to compare the dynamic behavior of the hollow crankshaft with that of the original, solid crankshaft. Global dynamic behavior of the crankshaft is analyzed bgy the transfer matrix method(TMM). The crankshaft has been modeled by 38 lumped mass and stiffness elements. The dynamic patameters of each lumped element are provided by Finite Element Method(FEM). The responses of the crankshaft from TMM are fed back as loading conditions to the Finite Element model to obtain dynamic stresses for critical areas of the crankshaft.

  • PDF

Analysis of dynamics characteristics of water injection pump through the 2D finite element (2D 유한요소 해석을 통한 Water injection pump의 동특성 분석)

  • LEE, JONG-MYEONG;KIM, YONG-HWI;KIM, JUN-HO;CHOI, HYEON-CHEOL;CHOI, BYEONG KEUN
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.408-414
    • /
    • 2014
  • After drilling operations at the offshore plant to production to crude oil to high pressure. After that time the low pressured of pipe inside when the secondary produce so oil recovery is reduced. At that time injection sea water at the pipe inside through water injection pump that the device Increase recovery so to be research and development at many industry. So developing 3-stage water injection pump at the domestic company. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic. In this paper, a 2D finite element analysis is performed through the dynamics of the present study was the validation of the model.

  • PDF

Structural Safety of Universal Joint using FEM Simulation (FEM 시뮬레이션을 이용한 유니버설 조인트의 구조안전성)

  • Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • Mechanical components are to be produced with accurate dimensions in order to function properly in assemblies of a machine. Once designs of mechanical components are created, designers examine the designs by adopting many known experimental methods. A primary test method includes stress and strain evaluation of structural parts. In addition, fatigue test and vibration analysis are an important test method for mechanical components. Real experiments at a laboratory are established when products are manufactured. Since design changes should be done before producing the designs in factories, rapid modifications for new designs are required in production industries. FEM simulation is a proper choice for a design evaluation with speed at a detail stage in design process. This research focuses modeling and mechanical simulation of a mechanical component in order to ensure structural safety. In this paper, a universal joint, being used in driving axels of vehicles, is studied as a target component. A design model is created and tested in some ways by using commercial software of FEM. The designed component is being twisted to transmit heavy power and thus, torsional stress should be under strengths of the component's material. The next is fatigue analysis to convince fatigue cycles to be within the endurance limit of the material. Another test is a vibration analysis for rotational components. This research draws final conclusions from these test analyses and recommends whether the designed model is under safety condition in terms of mechanical structure.

Analysis of Linear Springing Responses of a Container Carrier by using Vlasov Beam Model (Vlasov 보 모델을 이용한 컨테이너 선박의 스프링잉 응답해석)

  • Kim, Yoo-Il;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.306-320
    • /
    • 2010
  • Modern ultra-large container carriers can be exposed to the unprecedented springing excitation from ocean waves due to their relatively low torsional rigidity. Large deck opening on the deck of container carriers tends to cause warping distortion of hull structure under wave-induced excitation, eventually leading to the higher chance of resonance vibration between its torsional response and incoming waves. To handle this problem, a higher-order B-spline Rankine panel method and Vlasov-beam FE model was directly coupled in the time domain, and the coupled equation was solved by using an implicit iterative method. In order to capture the complicated behavior of thin-walled open section girder, a sophisticated beam-based finite element model was developed, which takes into account warping distortion and shear-on-wall effect. Then, the developed beam model was directly coupled with the time-domain Rankine panel method for hydrodynamic problem by using the fixed-point iteration method. The developed computational scheme was validated through the comparison with the frequency-domain solution on the container carrier model in linear springing regime.