• Title/Summary/Keyword: topology method

Search Result 1,195, Processing Time 0.028 seconds

Topology Decision of Truss Structures by Advanced Evolutionary Structural Optimization Method (개선된 진화론적 구조최적화에 의한 트러스 구조물의 형태결정)

  • Jeong, Se-Hyung;Pyeon, Hae-Wan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.67-74
    • /
    • 2003
  • The purpose of this study is to improve convergence speed of topology optimization procedure using the existing ESO method and to deal with topology decision of the truss structures according to a boundary condition, such as cantilever type. At the existing ESO topology optimization procedure for the truss structures, the adjustment of member sizes according to target stress has been executed by increasing or reducing a very small value from each member size. In this case, it takes too much iteration till convergence. Accordingly, it is practically hard to obtain optimum topology for a large scale structures. For that reason, it is necessary to improve convergence speed of ESO method more effectively. During the topology decision procedure, member sizes are adjusted by calculating approximate solution for member sizes corresponding to the target stress at every step, the new member sizes are adjusted by such method are applied in FEA procedure of next step.

  • PDF

3-D Topology Optimization by a Nodal Density Method Based on a SIMP Algorithm (SIMP 기반 절점밀도법에 의한 3 차원 위상최적화)

  • Kim, Cheol;Fang, Nan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.412-417
    • /
    • 2008
  • In a traditional topology optimization method, material properties are usually distributed by finite element density and visualized by a gray level image. The distribution method based on element density is adequate for a great mass of 2-D topology optimization problems. However, when it is used for 3-D topology optimization, it is always difficult to obtain a smooth model representation, and easily appears a virtualconnect phenomenon especially in a low-density domain. The 3-D structural topology optimization method has been developed using the node density instead of the element density that is based on SIMP (solid isotropic microstructure with penalization) algorithm. A computer code based on Matlab was written to validate the proposed method. When it was compared to the element density as design variable, this method could get a more uniform density distribution. To show the usefulness of this method, several typical examples of structure topology optimization are presented.

  • PDF

Topology Optimization using an Optimality Criteria Method (최적조건법에 의한 위상 최적화 연구)

  • 김병수;서명원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.224-232
    • /
    • 1999
  • Topology optimization has evolved into a very efficient concept design tool and has been incorporated into design engineering processes in many industrial sectors. In recent years, topology optimization has become the focus of structural design community and has been researched and applied widely both in academia and industry. There are mainly tow approaches for topology optimization of continuum structures ; homogenization and density methods. The homogenization method is to compute is to compute an optimal distribution of microstructures in a given design domain. The sizes of the micro-calvities are treated as design variables for the topology optimization problem. the density method is to compute an optimal distribution of an isotropic material, where the material densities are treated as design variables. In this paper, the density method is used to formulate the topology optimization problem. This optimization problem is solved by using an optimality criteria method. Several example problems are solved to show the usefulness of the present approach.

  • PDF

Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization

  • Roodsarabi, Mehdi;Khatibinia, Mohsen;Sarafrazi, Seyyed R.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1389-1410
    • /
    • 2016
  • This paper proposes a hybrid of topological derivative-based level set method (LSM) and isogeometric analysis (IGA) for structural topology optimization. In topology optimization a significant drawback of the conventional LSM is that it cannot create new holes in the design domain. In this study, the topological derivative approach is used to create new holes in appropriate places of the design domain, and alleviate the strong dependency of the optimal topology on the initial design. Furthermore, the values of the gradient vector in Hamilton-Jacobi equation in the conventional LSM are replaced with a Delta function. In the topology optimization procedure IGA based on Non-Uniform Rational B-Spline (NURBS) functions is utilized to overcome the drawbacks in the conventional finite element method (FEM) based topology optimization approaches. Several numerical examples are provided to confirm the computational efficiency and robustness of the proposed method in comparison with derivative-based LSM and FEM.

Preliminary Study on Linear Dynamic Response Topology Optimization Using Equivalent Static Loads (등가정하중을 사용한 선형 동적반응 위상최적설계 기초연구)

  • Jang, Hwan-Hak;Lee, Hyun-Ah;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1401-1409
    • /
    • 2009
  • All the forces in the real world act dynamically on structures. Design and analysis should be performed based on the dynamic loads for the safety of structures. Dynamic (transient or vibrational) responses have many peaks in the time domain. Topology optimization, which gives an excellent conceptual design, mainly has been performed with static loads. In topology optimization, the number of design variables is quite large and considering the peaks is fairly costly. Topology optimization in the frequency domain has been performed to consider the dynamic effects; however, it is not sufficient to fully include the dynamic characteristics. In this research, linear dynamic response topology optimization is performed in the time domain. First, the necessity of topology optimization to directly consider the dynamic loads is verified by identifying the relationship between the natural frequency of a structure and the excitation frequency. When the natural frequency of a structure is low, the dynamic characteristics (inertia effect) should be considered. The equivalent static loads (ESLs) method is proposed for linear dynamic response topology optimization. ESLs are made to generate the same response field as that from dynamic loads at each time step of dynamic response analysis. The method was originally developed for size and shape optimizations. The original method is expanded to topology optimization under dynamic loads. At each time step of dynamic analysis, ESLs are calculated and ESLs are used as the external loads in static response topology optimization. The results of topology optimization are used to update the design variables (density of finite elements) and the updated design variables are used in dynamic analysis in a cyclic manner until the convergence criteria are satisfied. The updating rules and convergence criteria in the ESLs method are newly proposed for linear dynamic response topology optimization. The proposed updating rules are the artificial material method and the element elimination method. The artificial material method updates the material property for dynamic analysis at the next cycle using the results of topology optimization. The element elimination method is proposed to remove the element which has low density when static topology optimization is finished. These proposed methods are applied to some examples. The results are discussed in comparison with conventional linear static response topology optimization.

Topology Optimization of Continuum Structures Using a Nodal Volume Fraction Method

  • Lee, Jin-Sik;Lim, O-Kaung
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.21-29
    • /
    • 2001
  • The general topology optimization can be considered as optimal material distribution. Such an approach can be unstable, unless composite materials are introduced. In this research, a nodal volume fraction method is used to obtain the optimum topology of continuum structures. This method is conducted from a composite material model composed of isotropic matter and spherical void. Because the appearance of the chessboard patterns makes the interpretation of the optimal material layout very difficult, this method contains a chessboard prevention strategy. In this research, several topology optimization problems are presented to demonstrate the validity of the present method and the recursive quadratic programming algorithm is used to solve the topology optimization problems.

  • PDF

Structural Topology Optimization using Element Remove Method (요소제거법을 이용한 구조물 위상최적설계)

  • 임오강;이진식;김창식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.183-190
    • /
    • 2001
  • Topology optimization. has been evolved into a very efficient conceptual design tool and has been utilized into design engineering processes in many industrial parts. In recent years, topology optimization has become the focus of structural optimization design and has been researched and widely applied both in academy and industry. Traditional topology optimization has been using homogenization method and optimality criteria method. Homogenization method provides relationship equation between structure which includes many holes and stiffness matrix in FEM. Optimality criteria method is used to update design variables while maintaining that volume fraction is uniform. Traditional topology optimization has advantage of good convergence but has disadvantage of too much convergency time and additive checkerboard prevention algorithm is needed. In one way to solve this problem, element remove method is presented. Then, it is applied to many examples. From the results, it is verified that the time of convergence is very improved and optimal designed results is obtained very similar to the results of traditional topology using 8 nodes per element.

  • PDF

Topology Optimization of Pick-up Actuator of CD-ROM for Vibration Reduction (위상 최적 설계를 통한 CD-ROM 광 픽업 액추에이터의 진동 저감)

  • Wang, Se-Myung;Kim, Yong-Su;Park, Ky-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.479-484
    • /
    • 2000
  • The topology optimization of electromagnetic systems is investigated and the TOPEM (Topology Optimization for Electromagnetic Systems) is developed using the finite element method (FEM). The design sensitivity equation for topology optimization is derived using the adjoint variable method. The proposed method is validated by applying it to the topology optimizations of a C-core actuator and an optical pickup actuator.

  • PDF

Topology Optimization of Shell Structures Using Adaptive Inner-Front Level Set Method (AIFLSM) (적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.354-359
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, an inner-front creation algorithm is proposed, in which the sizes, positions, and number of new inner-fronts during the optimization process can be globally and consistently identified. To update the level set function during the optimization process, the least-squares finite element method is employed. As demonstrative examples for the flexibility and usefulness of the proposed method, the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF

A Study on the Topology Optimization in Magnetic Fields - Comparisons Between the Density Method and the Homogenization Design Method (자기장 내의 위상최적화 방법에 대한 연구 - 밀도법과 균질화법의 비교 -)

  • Yoo, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.370-377
    • /
    • 2004
  • The density approach and the homogenization design method are representative methods in topology optimization problems. In the topology optimization in magnetic fields, those methods are applied based on the results of the applications In elastic fields. In this study, the density method is modified considering the concept of the homogenization design method. Also, the results of the topology optimization in magnetic fields by the modified density method as well as the homogenization method are compared especially focusing the change of the penalization parameter in the density approach. The effect of the definition of the design domain such as global/local design domain is also discussed.