• Title/Summary/Keyword: topic modeling techniques

Search Result 139, Processing Time 0.028 seconds

A Trend Analysis of Computer Education based on SNS Data through Data Mining Analysis (텍스트마이닝 분석을 활용한 SNS 데이터 기반의 정보교육의 동향 분석 연구)

  • Kim, Kapsu;Chun, Seokju;Koo, Dukhoi;Shin, Seungki
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.289-300
    • /
    • 2021
  • SNS data was collected and analyzed by topic modeling techniques to examine recent trends in information education. By deriving keywords and topics for SW education and AI education, we not only attempted to discover insights ahead of the next revised curriculum but also suggested directions. According to the SNS data analysis, the contents of human resource development for software and the instructional method in schools are indicated as a high requirement. Meanwhile, SW education should be conducted through a separate curriculum from elementary school, and this was consistent with the opinion that it is necessary to be organized as a required subject. There was an opinion to support the schools since AI education is newly introduced in next revised national curriculum. The trends in SW education and AI education which are observed through SNS data analysis could be concluded to conduct the substantial operation of information education and curriculum organization.

A Study on the Evaluation of Importance of Factors Affecting the Vessel Value (선박가치 변화요인에 관한 중요도 평가 연구)

  • Choi, Jung-Suk;Namgung, Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.91-99
    • /
    • 2022
  • The shipping industry is a service industry that operates its business by transporting cargo on ships and receiving freight. Therefore, large-scale capital investment is required for ship operation, and if the value of the ship is uncertain, the risk of shipping management increases. This study aims to identify the factors affecting changes in ship value and to analyze the importance of each variable. To achieve the goal, the factors affecting changes in ship value were identified and structured using the techniques of text mining and topic modeling, and classified into three main factors and 12 sub-factors. This study used AHP analysis to examine the relative importance of each factor. Results indicated that the main factor influencing the change in the vessel value was the shipping factor, followed by the investment factor and the environment factor. Other auxiliary factors that substantially affect the ship value include the volatility of the shipping market and of shipping freight.

Nurses' Perceived Needs and Barriers Regarding Pediatric Palliative Care: A Mixed-Methods Study

  • Kang, Kyung-Ah;Yu, SuJeong;Kim, Cho Hee;Lee, Myung-Nam;Kim, Sujeong;Kwon, So-Hi;Kim, Sanghee;Kim, Hyun Sook;Park, Myung-Hee;Choi, Sung Eun
    • Journal of Hospice and Palliative Care
    • /
    • v.25 no.2
    • /
    • pp.85-97
    • /
    • 2022
  • Purpose: This study aimed to describe nurses' perceived needs and barriers to pediatric palliative care (PPC). Methods: Mixed methods with an embedded design were applied. An online survey was conducted for nurses who participated in the End-of-Life Nursing Education Consortium- Pediatric Palliative Care (ELNEC-PPC) train-the-trainer program, of whom 63 responded. Quantitative data were collected with a survey questionnaire developed through the Delphi method. The 47 items for needs and 15 items for barriers to PPC were analyzed with descriptive statistics. Qualitative data were collected through open-ended questions and analyzed with topic modeling techniques. Results: The mean scores of most subdomains of the PPC needs were 3.5 or higher out of 4, and those of PPC barriers ranged from 3.22 to 3.56, indicating the items in the questionnaire developed in this study properly reflect each factor. The needs for PPC were divided into 4 categories: "children and adolescents," "families," "PPC management system," and "community-based PPC." Meanwhile, PPC barriers were divided into 3 categories: "healthcare delivery system," "healthcare provider," and "client." The keywords derived from the topic modeling were perception, palliative, children, and education for necessities and lack, perception, medical care, professional care providers, service, and system for barriers to PPC. Conclusion: In this study, by using mixed-methods, items of nurses' perceived needs and barriers to PPC were identified, categorized, and weighted, and their meanings were explored. For the stable establishment of PPC, the priority should be given to improving perceptions of PPC, establishing an appropriate system, and training professional care providers.

Analysis of major issues in the field of Maritime Autonomous Surface Ships using text mining: focusing on S.Korea news data (텍스트 마이닝을 활용한 자율운항선박 분야 주요 이슈 분석 : 국내 뉴스 데이터를 중심으로)

  • Hyeyeong Lee;Jin Sick Kim;Byung Soo Gu;Moon Ju Nam;Kook Jin Jang;Sung Won Han;Joo Yeoun Lee;Myoung Sug Chung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.12-29
    • /
    • 2024
  • The purpose of this study is to identify the social issues discussed in Korea regarding Maritime Autonomous Surface Ships (MASS), the most advanced ICT field in the shipbuilding industry, and to suggest policy implications. In recent years, it has become important to reflect social issues of public interest in the policymaking process. For this reason, an increasing number of studies use media data and social media to identify public opinion. In this study, we collected 2,843 domestic media articles related to MASS from 2017 to 2022, when MASS was officially discussed at the International Maritime Organization, and analyzed them using text mining techniques. Through term frequency-inverse document frequency (TF-IDF) analysis, major keywords such as 'shipbuilding,' 'shipping,' 'US,' and 'HD Hyundai' were derived. For LDA topic modeling, we selected eight topics with the highest coherence score (-2.2) and analyzed the main news for each topic. According to the combined analysis of five years, the topics '1. Technology integration of the shipbuilding industry' and '3. Shipping industry in the post-COVID-19 era' received the most media attention, each accounting for 16%. Conversely, the topic '5. MASS pilotage areas' received the least media attention, accounting for 8 percent. Based on the results of the study, the implications for policy, society, and international security are as follows. First, from a policy perspective, the government should consider the current situation of each industry sector and introduce MASS in stages and carefully, as they will affect the shipbuilding, port, and shipping industries, and a radical introduction may cause various adverse effects. Second, from a social perspective, while the positive aspects of MASS are often reported, there are also negative issues such as cybersecurity issues and the loss of seafarer jobs, which require institutional development and strategic commercialization timing. Third, from a security perspective, MASS are expected to change the paradigm of future maritime warfare, and South Korea is promoting the construction of a maritime unmanned system-based power, but it emphasizes the need for a clear plan and military leadership to secure and develop the technology. This study has academic and policy implications by shedding light on the multidimensional political and social issues of MASS through news data analysis, and suggesting implications from national, regional, strategic, and security perspectives beyond legal and institutional discussions.

A Study on the Research Trends on Literacy in Library and Information Science (문헌정보학 분야의 리터러시 연구 동향 분석)

  • Jang, Su Hyun;Nam, Young Joon
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.3
    • /
    • pp.263-292
    • /
    • 2022
  • The purpose of this study is to identify the topics of research related to the concepts of literacy in the field of Library and Information Science which is related to user education in libraries. Data were collected from the WoS and KCI databases, and complementary keyword analysis and topic modeling analysis techniques were used to identify topics of literature-related research articles in the field of Library and Information Science. Findings presented that there was a difference in keywords and topics between the two databases. Literacy-related topics identified from the KCI database were classified into three groups through topic modeling. Also, it was analyzed that there is a difference between the overall literacy-related research trend, the timing of the surge in research volume, and key frequent keywords in the Library and Information Science field confirmed in the study. In particular, in the study of literacy in all fields, a number of words such as 'literacy', 'education', 'media', and 'digital' were derived. However, in literature research in the field of Library and Information Science, keywords such as 'information utilization ability' and 'school library' appeared. Based on this, it was concluded that research on the ability to develop an evaluative eye for information is needed in line with today's information environment, where information is rapidly increasing in Korea in the future.

NFT(Non-Fungible Token) Patent Trend Analysis using Topic Modeling

  • Sin-Nyum Choi;Woong Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.41-48
    • /
    • 2023
  • In this paper, we propose an analysis of recent trends in the NFT (Non-Fungible Token) industry using topic modeling techniques, focusing on their universal application across various industrial fields. For this study, patent data was utilized to understand industry trends. We collected data on 371 domestic and 454 international NFT-related patents registered in the patent information search service KIPRIS from 2017, when the first NFT standard was introduced, to October 2023. In the preprocessing stage, stopwords and lemmas were removed, and only noun words were extracted. For the analysis, the top 50 words by frequency were listed, and their corresponding TF-IDF values were examined to derive key keywords of the industry trends. Next, Using the LDA algorithm, we identified four major latent topics within the patent data, both domestically and internationally. We analyzed these topics and presented our findings on NFT industry trends, underpinned by real-world industry cases. While previous review presented trends from an academic perspective using paper data, this study is significant as it provides practical trend information based on data rooted in field practice. It is expected to be a useful reference for professionals in the NFT industry for understanding market conditions and generating new items.

A Study on Developing a Web Care Model for Audiobook Platforms Using Machine Learning (머신러닝을 이용한 오디오북 플랫폼 기반의 웹케어 모형 구축에 관한 연구)

  • Dahoon Jeong;Minhyuk Lee;Taewon Lee
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.337-353
    • /
    • 2024
  • The purpose of this study is to investigate the relationship between consumer reviews and managerial responses, aiming to explore the necessity of webcare for efficiently managing consumer reviews. We intend to propose a methodology for effective webcare and to construct a webcare model using machine learning techniques based on an audiobook platform. In this study, we selected four audiobook platforms and conducted data collection and preprocessing for consumer reviews and managerial responses. We utilized techniques such as topic modeling, topic inconsistency analysis, and DBSCAN, along with various machine learning methods for analysis. The experimental results yielded significant findings in clustering managerial responses and predicting responses to consumer reviews, proposing an efficient methodology considering resource constraints and costs. This research provides academic insights by constructing a webcare model through machine learning techniques and practical implications by suggesting an efficient methodology, considering the limited resources and personnel of companies. The proposed webcare model in this study can be utilized as strategic foundational data for consumer engagement and providing useful information, offering both personalized responses and standardized managerial responses.

A Context-Awareness Modeling User Profile Construction Method for Personalized Information Retrieval System

  • Kim, Jee Hyun;Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2014
  • Effective information gathering and retrieval of the most relevant web documents on the topic of interest is difficult due to the large amount of information that exists in various formats. Current information gathering and retrieval techniques are unable to exploit semantic knowledge within documents in the "big data" environment; therefore, they cannot provide precise answers to specific questions. Existing commercial big data analytic platforms are restricted to a single data type; moreover, different big data analytic platforms are effective at processing different data types. Therefore, the development of a common big data platform that is suitable for efficiently processing various data types is needed. Furthermore, users often possess more than one intelligent device. It is therefore important to find an efficient preference profile construction approach to record the user context and personalized applications. In this way, user needs can be tailored according to the user's dynamic interests by tracking all devices owned by the user.

Identifying Issue Changes of AI Chatbot 'Iruda' Case and Its Implications (AI 챗봇 '이루다' 논란의 이슈 변화와 시사점)

  • Choi, S.S.;Hong, A.R.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • The controversy over Artificial Intelligence (AI) chatbot "Iruda," which suspended its service 20 days after its launch, can be seen as the first case to inform the public of AI ethics issues. Based on this context, this study examines the controversy and social semantic formation of "Iruda" service cases using news topic modeling techniques. 963-news articles were used for the analysis, and the event's duration was analyzed based on major events, such as service start, controversy, and suspension, to understand the progress. From the analyses results, we obtain major keywords and a total of 16 topics (5, 4, 7) from the period. Finally, the implications for the development and utilization of AI services obtained through this controversy were discussed based on the analysis results.

Evaluating the Characteristics of Subversive Basic Fashion Utilizing Text Mining Techniques (텍스트 마이닝(text mining) 기법을 활용한 서브버시브 베이식(subversive basics) 패션의 특성)

  • Minjung Im
    • Journal of Fashion Business
    • /
    • v.27 no.5
    • /
    • pp.78-92
    • /
    • 2023
  • Fashion trends are actively disseminated through social media, which influences both their propagation and consumption. This study explored how users perceive subversive basic fashion in social media videos, by examining the associated concepts and characteristics. In addition, the factors contributing to the style's social media dissemination were identified and its distinctive features were analyzed. Through text mining analysis, 80 keywords were selected for semantic network and CONCOR analysis. TF-IDF and N-gram results indicate that subversive basic fashion involves transformative design techniques such as cutting or layering garments, emphasizing the body with thin fabrics, and creating bold visual effects. Topic modeling suggests that this fashion forms a subculture that resists mainstream norms, seeking individuality by creatively transforming the existing garments. CONCOR analysis categorized the style into six groups: forward-thinking unconventional fashion, bold and unique style, creative reworking, item utilization and combination, pursuit of easy and convenient fashion, and contemporary sensibility. Consumer actions, linked to social media, were shown to involve easily transforming and pursuing personalized styles. Furthermore, creating new styles through the existing clothing is seen as an economic and creative activity that fosters network formation and interaction. This study is significant as it addresses language expression limitations and subjectivity issues in fashion image analysis, revealing factors contributing to content reproduction through user-perceived design concepts and social media-conveyed fashion characteristics.