• 제목/요약/키워드: tooth modification

검색결과 101건 처리시간 0.053초

치형수정된 기어구동계의 비선형 동특성 해석 (Nonlinear Dynamic Characteristics of Gear Driving System with Tooth Modification)

  • Cho, Yun-Su;Park, Yeon-Sun
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.311.1-311
    • /
    • 2002
  • To reduce the vibration of a gear driving system, the modification of gear tooth from the orignal involute gear profile is usually done in gear manufacturers. The quantity of the tooth modification has been decided on the basis of the intereference between two gear teeth during gear meshing and the elastic deformation due to loading. (omitted)

  • PDF

치형수정된 기어쌍의 치합전달오차 모델링 (Modeling of Transmission Error of A Gear Pair with Modified Teeth)

  • 주상훈;노오현;정동현;배명호;박노길
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.841-848
    • /
    • 1998
  • In the gear manufacturing, tooth modification is usually applied for the prevention of tooth impact during the loading. In contrary, tooth profile error causes amplifying the whine noise which is cumbersome to reduce in the automobile gear box. So optimum quantity of the modifications must be obtained for the good performance in the vibrational sense. In this paper, a formulation to define the tooth curve by considering the profile manufacturing error and loading deformation of the gear tooth is suggested and the transmission error and loading deformation of the gear tooth is suggested and the transmission error with modified tooth in the gear system is evaluated. A pair of gear set is mathematically modelled. The equivalent excitation in the gear vibratonal model is formulated. For the experimental evaluaton on the derived transmission error function, a simple geared system is set up in which the gears are designed to give pre-designed tooth profile modification and manufactured by CNC Wire Cutting Machine. Under slow speed operaton, the transmission error of the gear pair is measured by using two rotational laser vibrometers, compared with the calculated one of which the result shows good agreement.

  • PDF

풍력터빈용 고속단 헬리컬 기어의 치형 최적화에 관한 연구 (A Study on Optimization of Tooth Micro-geometry for Wind Turbine High Speed Stage Helical Gear Pair)

  • 조성민;이도영;김래성;조상필;류성기
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.15-20
    • /
    • 2014
  • The wind industry grew in the first decade of the 21st century at rates consistently above 20% a year. For wind turbine, gearbox failure can be extremely costly in terms of repair costs, replacement parts, and in lost power production due to downtime. In this paper, gear tooth micro-modification for the high speed stage was used to compensate for the deformation of the teeth due to load and to ensure a proper meshing to achieve an optimized tooth contact pattern. The gearbox was firstly modeled in a software, and then the various combined tooth modification were presented, and the prediction of transmission under the loaded torque for the helical gear pair was investigated, the normal load distribution and root stress were also obtained and compared before and after tooth modification under one torque. The simulation results showed that the transmission error and normal load distribution under the load can be minimized by the appropriate tooth modification. It is a good approach where the simulated result is used to improve the design before the prototype is available for the test.

MODELING TRANSMISSION ERRORS OF GEAR PAIRS WITH MODIFIED TEETH FOR AUTOMOTIVE TRANSMISSIONS

  • Lee, H.W.;Park, M.W.;Joo, S.H.;Park, N.G.;Bae, M.H.
    • International Journal of Automotive Technology
    • /
    • 제8권2호
    • /
    • pp.225-232
    • /
    • 2007
  • A tooth profile modification for loaded gears is used to avoid a tooth impact. Since a tooth profile error causes amplification of the cumbersome whine noise in automotive gear transmissions, an optimal quantity of tooth profile modifications must be obtained for good performance in the vibration sense. In this paper, a tooth profile modification curve considering profile manufacturing errors and elastic deformation of the gear tooth is formulated; in addition, transmission errors of the gear system with modified teeth are verified. The equivalent excitation due to transmission errors is formulated. For experimental evaluation of the transmission error, the transmission error for a simple gear system was measured by two rotational laser vibrometers. Finally, we perform a comparative analysis between the calculated and measured responses to the excitations due to the transmission error to verify the practicability of the application to automotive transmissions.

내접치차의 강도에 관한 연구 (A study on strength of internal gear)

  • 정태형
    • 오토저널
    • /
    • 제6권3호
    • /
    • pp.45-54
    • /
    • 1984
  • Bending strength of an internal gear tooth is discussed as tooth form factor taking into account the actual stress magnitude. Stress analysis was carried out by the finite element method(FEM) for the calculation of tooth form factor of an internal gear. This paper also investigated the influences of number of teeth and addendum modification coefficient of the internal gear and the influences of number of teeth, addendum modification coefficient, pressure angle, radius of rounding of tooth tip, and bottom clearance coefficient of the pinion-shaped cutter on tooth form factor of internal gear. Generalizing the resultant data, a simple formula for the tooth form factor of an internal gear was derived for the calculation of tooth bending strength of an internal gear.

  • PDF

플러그인 HEV용 변속기전달오차와 하중분포에 관한 연구 (Analytical Prediction of Transmission Error and Load Distribution for a Plugin HEV)

  • 장기;강재화;윤기백;류성기
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.116-121
    • /
    • 2012
  • In recent years, world is faced with a transportation energy dilemma, and the transportation is dependent on a single fuel - petroleum. However, Hybrid Electric Vehicle(HEV) technology holds more advantages to reduce the demand for petroleum in the transportation by efficiency improvements of petroleum consumption. Therefore, there is a trend that lower gear noise levels are demanded in HEV for drivers to avoid annoyance and fatigue during operation. And meshing transmission error(T.E.) is the excitation that leads to the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of gear tooth profile and lead modification, and the predictions of transmission error and load distribution are shown under one loaded torque for the 1st gear pair of HEV gearbox. The test is also obtained before tooth micro-modification under the torque. At last, the appropriate tooth modification is used to minimize the transmission error and load distribution under the loaded torque. It is a good approach which the simulated result is used to improve the design in order to minimize the radiation gear whine noise.

기어미션용 실증적 기어치형수정에 관한 연구 (Study on Empirical Gear Profile Micro-modifications for Gear Transmission)

  • 장기;왕주겐;류성기
    • 한국기계가공학회지
    • /
    • 제16권3호
    • /
    • pp.54-62
    • /
    • 2017
  • When gears mesh, shock and noise are produced as results of tooth error and tooth deformation under load. Transmission error (TE) is the most important cause of gear noise and vibration because TEs affect the changes of the force and the speed of gears. Gear tooth modification research plays a positive role in reducing TE and improving the design level and transmission performance of transmission systems. In high-precision manufacturing gear, gear tooth modification is also commonly used to reduce noise in practical applications. In order to study the accuracy of gear transmission, some empirical gear profile micro-modifications are introduced, and a helical gear pair is modeled and analyzed in RomaxDesigner software to investigate the utility of these modification methods. Some of these will be selected as experimental proposals for gear pairs, and these manufactured gears will be tested and compared in a semi-anechoic room later. The final purpose of this study is to find reasonable and convenient empirical formulae to facilitate improved gear production.

조속식 감속기의 치 강도 및 커터치형 해석 (Analysis of Tooth Strength and Cutter Tooth Profile in Harmonic Drive Reducer)

  • 전완주;오박균
    • Tribology and Lubricants
    • /
    • 제5권2호
    • /
    • pp.107-112
    • /
    • 1989
  • This paper deals with strength analysis of tooth and method of manufacture of external tooth profile in harmonic drive. From the calculation of load imposed on the contact teeth, moximum contact stress is investigated to design the addendum modification coefficient. New tooth profile of the external gear is generated according to the law of gearing, assuming that internal gear has involute tooth profile. External tooth profile can't be manufactured by conventional exclusive tools which have pressure angle of 20$\circ$. The method to design cutter tooth profile is presented.

Spur Gear의 미끄럼 마멸율에 관한 연구 (A Study on the Sliding Wear Calculation in Spur Gears)

  • 김태완;문석만;강민호;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.25-34
    • /
    • 1999
  • In this study, the sliding wear in spur gears, using Archard's wear model, is analyzed. Formulas of tooth sliding wear depth along the line of action are derived. The tooth profile is modified Id make a smooth transmission of the normal loads and the cylinder profile for reducing the pressure spike is suggested. The sliding wear rate is calculated with these profiling results. We expect these modification methods to contribute to the reduction of sliding wear in the root and the tip of tooth and tooth edge.

  • PDF

인휠 시스템용 유성 기어 감속기의 응력 해석 및 개선 설계 (Stress Analysis and Design Modification of the Planetary Gear Reducer of an In-wheel System)

  • 정성필;정원선;박태원
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.732-737
    • /
    • 2011
  • The planetary gear reducer becomes more and more widely used in machine industries. The planetary gear reducer has a significant role to transmit power to wheel & tire module in the In-wheel system. Thus, the planetary gear reducer should have strong stiffness and durability. In this paper, the contact and bending stresses at the tooth of the planetary gear reducer are analyzed using MASTA, a commercial gear design and analysis software. Stress distribution at the tooth face of the sun, planetary and annulus gears are obtained using the finite element method. The design modification is performed using the response surface method. The usefulness of the design modification and optimization method presented in this paper is verified by comparing the maximum stresses of the original and optimized planetary gear tooth.