• 제목/요약/키워드: tooth modification

검색결과 101건 처리시간 0.024초

헬리컬 치차의 진동최소화를 위한 치면 수정량의 결정 (Determination of the Tooth Modification Amounts for Minimizing the Vibration of Helical Gear)

  • 정태형;명재형;김기태
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.199-205
    • /
    • 2000
  • The vibration and noise of gears is due to the vibration exciting force caused by the tooth stiffness which changes periodically as the mesh of teeth proceeds and by the transmission error, that is, the rotation delay between driving gear and driven gear caused by manufacturing error and alignment error in assembly and so on. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification, end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the mesh analysis of gears. The constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth fillet stress, surface durability and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. And, since the aspect ratio is an important parameter of tooth modification, we investigate the relation between it and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is to be utilized to resolve the problem of vibration of helical gears.

  • PDF

Tooth modification of helical gears for minimization of vibration and noise

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.5-11
    • /
    • 2001
  • Vibration and noise of gears is doc to the transmission error and the vibration exciting force caused by the periodically alternating tooth stiffness. Transmission error is the rotation delay between driving and driven gear caused by manufacturing error, alignment error in assembly and so on. Tooth stiffness changes with the proceeding mesh of teeth. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification. end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the meshing analysis of gears. Formulated constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth bending strength, surface durability, and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. We also investigate the relation between the aspect ratio and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is expected to be practically useful to resolve the problem of vibration of helical gears.

  • PDF

스퍼기어의 치형수정 프로그램의 개발 (A Development of Tooth Profile Modification for Spur Gear)

  • 황진영;황성욱;김태완;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.259-266
    • /
    • 2002
  • The basic concept of 'tooth profile modification' is to change a part of the involute profile to reduce the load in that area and appropriate profile modifications can help gears to run quietly and resist scoring, pitting and tooth breakage. In this study, the modification of tooth profile to make a smooth transmission of the normal loads in spur gears has been developed. The modified tooth profile has been determined by the total deflection at contact points. We use the AGMA Standard to design basic gear profile, We also developed a gear design Program using tooth profile modification

  • PDF

FEM을 이용한 고속기어 치형 수정에 관한 연구 (Study on the Tooth Modification for High Speed Gear by Finite Element Method)

  • 반재삼;이경원;김규하;조규종
    • 한국공작기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.72-77
    • /
    • 2003
  • The stable driving condition of high speed gear is approached by shape modifications of a gear tooth. Recently, many gear designers are using FEM for the design and the manufacture of a high precision gear. In this paper, it is aimed to drive in stable sound level through the modification of the tooth and the shape of a gear. The simulation is used to understand the effect of holes for the decrement of weight and the stress variation for the tooth modification. Beam elements used to simulate the same condition as a real gear drive by FEM. The driven gear is simulated to 60,000rpm for the tooth modification.

치형수정 기술을 이용한 스퍼기어설계 소프트웨어의 개발 (Development of Spur Gear Design Software using Tooth Profile Modification)

  • 김태완;황진영;조용주
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.202-211
    • /
    • 2002
  • The basic concept of 'tooth profile modification' to change a part of the involute profile to reduce the load in that area and appropriate profile modifications can help gears to run quietly and resist scoring, pitting and tooth breakage. In this study, the modification of tooth profile to make a smooth transmission of the normal loads in spur gears has been developed. The modified tooth profile has been determined by the total deflection at contact points. We use the AGMA Standard to design basic gear profile. We also developed a gear design program using tooth profile modification.

평기어 치의 변형 후 치간섭 방지를 위한 치형 수정에 관한 연구 (A Study on the Profile Modification of Spur Gears for the Prevention of Gear Tooth Overlap by Deformation)

  • 허경재;박수진
    • 한국정밀공학회지
    • /
    • 제16권3호통권96호
    • /
    • pp.208-214
    • /
    • 1999
  • The purpose of this paper is to develop a profile modification technique of spur gears and its computer program for the prevention of gear tooth overlap. In the gear system, tooth overlap produces an impact at the initial contact of some tooth pairs. In this analysis, contact surface was assumed to be unbonded and frictionless under small deformation and stain. The problem is formulated by a variational statement with inequality constraint. Tooth load sharing is obtained by the application of contact theory, and overlap is known by the analysis of deformation. After carrying out the profile modification of gear tooth, we verified the reasonable results.

  • PDF

치형수정된 기어구동계의 비선형 동특성 해석 (Nonlinear Dynamic Characteristics of Gear Driving System with Tooth Modification)

  • 조윤수;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.25-30
    • /
    • 2002
  • To reduce the vibration of a gear driving system, the modification of gear tooth from the orignal involute gear profile is usually done in gear manufacturers. The quantity of tooth modification has been decided on the basis of the interference between two gear teeth during gear meshing and the elastic deformation due to loading. However, the dynamic characteristics with tooth modification has to be investigated to avoid the instability to the variation of gear meshing stiffness and the nonlinearity due to gear backlash which results in sub- or super-harmonics in its responses. This research shows the dynamic characteristics with various tooth modifications in its type and quantity.

  • PDF

치형수정된 기어구동계의 비선형 동특성 해석 (Nonlinear Dynamic Characteristics of Gear Driving System with Tooth Modification)

  • 조윤수;최연선
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.688-693
    • /
    • 2003
  • To reduce the vibration of a gear driving system. the modification of gear tooth from the orignal involute gear profile is usually done in gear manufacturers. The quantity of tooth modification has been decided on the basis of the interference between two gear teeth during gear meshing and the elastic deformation due to loading. However. the dynamic characteristics with tooth modification has to be investigated to avoid the instability to the variation of gear meshing stiffness and the nonlinearity due to gear backlash which results in sub- or super-harmonics in its responses. This research shows the dynamic characteristics with various tooth modifications in its type and quantity.

평기어의 스커핑 강도향상을 위한 치형수정 기술의 연구 (A Study of Spur Gear Tooth Profile Modiscation Scheme for ScufEng Resistance Improvement)

  • 김태완;황진영;조용주
    • Tribology and Lubricants
    • /
    • 제18권6호
    • /
    • pp.418-424
    • /
    • 2002
  • The basic concept of ‘gear profile modification’ is to change a part of the involute profile to reduce the load in that area and appropriate profile modifications can help gears to run quietly and resist scoring., pitting, and tooth breakage. In this study, the modification of tooth profile to make a smooth transmission of the normal loads in spur gears has been developed. The modified tooth profile has been determined by the total deflection at contact points. We also compared our results with other experimental results.

트럭 최종감속기 평기어의 치형최적화에 관한 연구 (Tooth Modification for Spur Gear for Articulated Hauler's Final Drive)

  • 오세웅;장기;이인범;류성기
    • 한국기계가공학회지
    • /
    • 제11권5호
    • /
    • pp.42-47
    • /
    • 2012
  • Construction equipment is heavily loaded during normal operation. In recent years, there is a trend that lower gear noise levels are demanded for drivers to avoid annoyance and fatigue during operation. For articulated hauler's final drive, meshing transmission error(T.E.) is the excitation that leads the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. This paper presents a method for the analysis of the tooth profile modification, and the prediction of transmission error under the loaded torques for the spur gear pair of the articulated hauler's final drive. And the transmission error, transmission error harmonics and contact stress are also calculated and compared before and after tooth modification under one torque. The simulation result shows that the transmission error and contact stress under the loads can be minimized by the appropriate tooth profile modification.