• Title/Summary/Keyword: tool steel

Search Result 956, Processing Time 0.023 seconds

The Effects of Homogenization, Hot-Forging, and Annealing Condition on Microstructure and Hardness of a Modified STD61 Hot-Work Tool Steel (균질화, 열간단조, 어닐링 조건이 개량된 STD61 열간 금형강의 미세조직과 경도에 미치는 영향)

  • Park, Gyujin;Kang, Min-Woo;Jung, Jae-Gil;Lee, Young-Kook;Kim, Byung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.2
    • /
    • pp.72-79
    • /
    • 2013
  • The effects of homogenization, hot-forging, and annealing condition on microstructure and hardness of a modified STD61 hot-work tool steel were investigated. The ingot specimen had a dendritic structure consisting of bainite and martensite. Spherical VC particles of approximately 50 nm and cuboidal (V,Ti)C particles of about 100 nm were observed in the ingot specimen. After homogenization, the dendritic structure was blurred, and the difference in hardness between martensite and bainite became narrow, resulting in the more homogeneous microstructure. Needle-shaped non-equilibrium $(Fe,Cr)_3C$ particles were additionally observed in the homogenized specimen. The hot-forged specimen had bainite single phase with spherical VC, cuboidal (V,Ti)C, and needle-shaped $(Fe,Cr)_3C$ particles. After annealing at $860^{\circ}C$, the microstructures of specimens were ferrite single phase with various carbides such as VC, $(Fe,Cr)_7C_3$, and $(Fe,Cr)_{23}C_6$ because of relatively slow cooling rates. The size of carbides in annealed specimens decreased with increasing cooling rate, resulting in the increase of hardness.

Property Estimation of Functionally Graded Materials Between M2 Tool Steel and Cu Fabricated by Powder Metallurgy (분말야금으로 제작된 M2 공구강과 Cu 간 기능성 경사 복합재의 물성 평가)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.953-958
    • /
    • 2014
  • The use of functionally graded materials (FGMs) may enhance thermal conductivity without reducing the desired strength in many applications such as injection molds embedding conformal cooling channels and cutting tools with heat sinks (or cooling devices). As a fundamental study for cutting tools having FGM heat sinks between M2 tool steel and Cu, six FGM specimens (M2 and Cu powders were premixed such that the relative compositions of M2 and Cu were 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 wt%) were fabricated by powder metallurgy in this study. The cross sections of these specimens were observed by optical microscopy, and then the material properties (such as thermal conductivity, specific heat, and coefficient of thermal expansion) related to heat transfer were measured and analyzed.

Microstructures of Powders and Additively Manufactured Objects of an Alloy Tool Steel for Cold-Work Dies (냉간금형용 합금공구강 분말 및 적층조형체의 미세조직)

  • Kang, Jun-Yun;Yun, Jaecheol;Kim, Hoyoung;Kim, Byunghwan;Choe, Jungho;Yang, Sangsun;Yu, Ji-Hun;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.202-209
    • /
    • 2017
  • A cold-work tool steel powder is used to fabricate 3-dimensional objects by selective laser melting using a high-pressure gas atomization process. The spherical powder particles form continuous carbide networks among the austenite matrix and its decomposition products. The carbides comprise Nb-rich MC and Mo-rich $M_2C$. In the SLM process, the process parameters such as the laser power (90 W), layer thickness ($25{\mu}m$), and hatch spacing ($80{\mu}m$) are kept fixed, while the scan speed is changed from 50 mm/s to 4000 mm/s. At a low scan speed of 50 mm/s, spherical cavities develop due to over melting, while they are substantially reduced on increasing the speed to 2000 mm/s. The carbide network spacing decreases with increasing speed. At an excessively high speed of 4000 mm/s, long and irregularly shaped cavities are developed due to incomplete melting. The influence of the scan pattern is examined, for which $1{\times}1 mm^2$ blocks constituting a processing layer are irradiated in a random sequence. This island-type pattern exhibits the same effect as that of a low scan speed. Post processing of an object using hot isostatic pressing leads to a great reduction in the porosity but causes coarsening of the microstructure.

Effect of NbC Carbide Addition on Mechanical Properties of Matrix-Type Cold-Work Tool Steel (매트릭스(matrix)형 냉간금형강의 기계적 특성에 미치는 NbC 탄화물 첨가의 영향)

  • Kang, Jun-Yun;Kim, Hoyoung;Son, Dongmin;Lee, Jae-Jin;Yun, Hyo Yun;Lee, Tae-Ho;Park, Seong-Jun;Park, Soon Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.239-249
    • /
    • 2015
  • Various amount of NbC carbide was intentionally formed in a matrix-type cold-work tool steel by controlled amount of Nb and C addition. And the effect of NbC addition on the mechanical properties was investigated. Four alloys with different Nb and C contents were cast by vacuum induction melting, then hot forging and spheroidizing annealing were conducted. The machinability of the annealed specimens was examined with 3 different cutting tools. And tensile tests at room temperature were conducted. After quenching and tempering, hardness and impact toughness were measured, while wear resistance was evaluated by disk-on-plate type wear test. The increasing amount of NbC addition resulted in degraded machinability with increased strength, whereas the absence of NbC also led to poor machinability due to high toughness. After quenching and tempering, the additional NbC improved wear resistance with increasing hardness, whereas it deteriorated impact toughness. Therefore, it could be found that a moderate addition of NbC was desirable for the balanced combination of mechanical properties.

Microstructures and Mechanical Characteristics of Advanced Cold-Work Tool Steels: Ledeburitic vs. Matrix-type Alloy (고성능 냉간금형강의 미세조직과 기계적 특성: 레데부라이트(ledeburitic) 및 매트릭스(matrix)형 강종의 비교)

  • Kang, Jun-Yun;Kim, Hoyoung;Son, Dongmin;Lee, Jae-Jin;Yun, Hyo Yun;Lee, Tae-Ho;Park, Soon Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.181-189
    • /
    • 2015
  • Two types of advanced cold-work tool steels were characterized and compared. A higher-alloyed ledeburitic steel with primary carbides (denoted as 9Cr) and a lower-alloyed steel without primary carbides (5Cr) were fabricated by vacuum induction melting and subsequent hot forging. They were spheroidizing-annealed at $870^{\circ}C$, quenched at $1030^{\circ}C$ and tempered at 180 or $520^{\circ}C$. Their machinability after annealing and hardness, impact toughness, wear resistance after tempering were compared and interpreted in association with their characteristic microstructures. After annealing, 5Cr showed higher resistance to machining due to higher ductility and toughness in spite of lower strength and smaller carbide volume. Owing to smaller carbide volume fraction and the absence of coarse primary carbides, 5Cr showed even better impact toughness although the hardness was lower. The improved toughness of 5Cr resulted in excellent wear resistance, while smaller volume fraction of retained austenite also contributed to it.

Fabrication of Functionally Graded Materials Between P21 Tool Steel and Cu by Using Laser-Aided Layered Manufacturing (레이저 적층조형을 이용한 P21 툴 스틸과 Cu 간 기능성 경사 복합재의 제작)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.61-66
    • /
    • 2013
  • With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one-dimensional P21-Cu FGMs were fabricated by using laser-aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

A Novel Method to Calculate the Carbides Fraction from Dilatometric Measurements During Cooling in Hot-Work Tool Steel

  • Zhao, Xiaoli;Li, Chuanwei;Han, Lizhan;Gu, Jianfeng
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1193-1201
    • /
    • 2018
  • Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich $M_{23}C_6$, and most of them are V-rich MC, only very few are Cr-rich $M_{23}C_6$. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.

Study on the effect of the surface rolling condition to the surface roughness (표면 Rolling시 작업조건이 표면조도에 미치는 영향)

  • 강명순;김희남
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.68-76
    • /
    • 1986
  • The surface rolling method which is one of the plastic deformation processes increases the surface roughness and hardness of materials. In this study, three NACHI6000 ZZ bearing were used for surface rolling tool on the mild steel and high carbon steel. The purpose of this study is to investigate the effects of rolling speed, feed rate and contact pressure on the surface roughness. The following results have been obtained with the mild steel and high carbon steel. 1. The roller finishing method has increased surface roughness from 2.4 .mu.m Ra at initial ground surface to 0.17 .mu.m Ra-0.4 .mu.m Ra. 2. The contact pressure has influenced greatly on the surface roughness. There is an optimal contact pressure. 3. As the rolling speed and the feed rate decrease, the surface roughness improves. 4. The optimal contact pressure for the good surface roughness of SS40 and STC 3 has been at 213 Kgf/Cm$^{2}$ and 220 Kgf/Cm$^{2}$ respectively.

  • PDF

Optimization of Reinforced Steel Fibrous Concrete Beam for the Objective Flexural Behavior (휨거동을 만족하는 강섬유보강 철근콘크리트보의 최적화)

  • 이차돈;안지현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.541-546
    • /
    • 1998
  • The use of steel fibers in conventional reinforced concrete increases the strength and ductility under various loading conditions. In order to examine the possibility of the use of these combinations achieving required strength and ductility of a reinforced concrete beam, a refined optimization procedure based on nonlinear layered finite element method and nonlinear programming technique is developed in this study. Six design variables-beam width and depth, fiber volume fraction, amounts of tensile and compressive rebars, and stirrup, and stirrup spacing-are considered. The developed model can be used as a tool in determining the economical use of steel fibers in designing the reinforced steel fibrous concrete beam.

  • PDF

A Study on the Cutting Surface Characteristics in CNC Gas Cutting of Plate Steel (강판의 CNC 가스 절단시 절단면특성에 관한 연구)

  • 김성일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • In the gas cutting of plate steel, the quality of the cut surfaces and sections is strongly dependent on the cutting conditions such as cutting speed, kerf width, plate thickness, material, distance between tip and specimen, and cutting oxygen pressure etc. The cutting tests of plate steel were carried out using CNC gas cutting machine. This paper deals with cut surface and section characteristics of plate steel in CNC gas cutting. Both top and bottom widths of kerf, the surface roughness(Ra, Rmax) of cutting surfaces are measured under various cutting conditions such as cutting speed, material, distance between tip and specimen, and cutting thickness. The photographs of cut surface and cut section are also analyzed under various cutting conditions.