DOI QR코드

DOI QR Code

Microstructures and Mechanical Characteristics of Advanced Cold-Work Tool Steels: Ledeburitic vs. Matrix-type Alloy

고성능 냉간금형강의 미세조직과 기계적 특성: 레데부라이트(ledeburitic) 및 매트릭스(matrix)형 강종의 비교

  • Received : 2015.05.15
  • Accepted : 2015.05.28
  • Published : 2015.07.31

Abstract

Two types of advanced cold-work tool steels were characterized and compared. A higher-alloyed ledeburitic steel with primary carbides (denoted as 9Cr) and a lower-alloyed steel without primary carbides (5Cr) were fabricated by vacuum induction melting and subsequent hot forging. They were spheroidizing-annealed at $870^{\circ}C$, quenched at $1030^{\circ}C$ and tempered at 180 or $520^{\circ}C$. Their machinability after annealing and hardness, impact toughness, wear resistance after tempering were compared and interpreted in association with their characteristic microstructures. After annealing, 5Cr showed higher resistance to machining due to higher ductility and toughness in spite of lower strength and smaller carbide volume. Owing to smaller carbide volume fraction and the absence of coarse primary carbides, 5Cr showed even better impact toughness although the hardness was lower. The improved toughness of 5Cr resulted in excellent wear resistance, while smaller volume fraction of retained austenite also contributed to it.

Keywords

References

  1. G. Roberts, G. Krauss and R. Kennedy : Tool Steels, 5th ed, ASM International, Materials Park, OH (1998) 7-28.
  2. KS D 3753 : 지식경제부 기술표준원 (2008).
  3. JIS G 4404 : Japanese Standards Association (2006).
  4. ASTM A 681-08 : ASTM International (2008).
  5. G. Roberts, G. Krauss and R. Kennedy : Tool Steels, 5th ed, ASM International, Materials Park, OH (1998) 203-217.
  6. 홍기정, 송진화, 정인상 : 열처리공학회지, 24 (2011) 262-270.
  7. Advanced High Strength Steel (AHSS) Application Guidelines, Ver. 4.1, WorldAutoSteel, 2011, http://www.worldautosteel.org
  8. J. P. McGulre : Advanced Stamping for High Strength Steels, in Great Designs in Steel Seminar, 2012, http://www.autosteel.org
  9. E. Billur : Stamping Journal Jan/Feb (2010) 8-9.
  10. 김호영, 강전연, 손동민, 이대수, 이태호, 정우창, 조경목 : 열처리공학회지, 27 (2014) 242-252.
  11. K. Fukaura, H. Sunada, Y. Yokoyama, K. Teramoto, D. Yokoi and N. Tsujii : Tetsu-to-Hagane, 84 (1998) 72-77.
  12. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii and K. Ono : Metall. Mater. Trans. A, 35A (2004) 1289-1300.
  13. F. Arieta, E. B. M. netto, A. Reguly, W. K. Pannes, U. Beutler, F. van Soest and C. Ernst : J. ASTM Int., 8 (2011) 129-145.
  14. J. -Y. Kang, Y. -U. Heo, H. Kim, D. -W. Suh, D. Son, D. H. Lee and T. -H. Lee : Mater. Sci. Eng. A, A614 (2014) 36-44.
  15. Uddeholm Caldie : http://www.uddeholm.com
  16. ASTM E 8 : ASTM International (2013).
  17. ASTM E 23-02 : ASTM International (2002).
  18. G. Xu, M. Kutsuna, Z. Liu and K. Yamada : Surface & Coatings Technology, 201 (2006) 1138-1144. https://doi.org/10.1016/j.surfcoat.2006.01.040
  19. ASTM E975, ASTM international (2013).
  20. H. Kim, J. -Y. Kang, D. Son, T. -H. Lee, K. -M. Cho : Mater. Characterization, 107 (2015) 376-385. https://doi.org/10.1016/j.matchar.2015.08.001
  21. G. Roberts, G. Krauss and R. Kennedy : Tool Steels, 5th ed, ASM International, Materials Park, OH (1998) 97-104.
  22. W. C. Leslie : The Physical Metallurgy of Steels, International student edition, McGraw-Hill Kogakusha, Tokyo, Japan (1982) 368-372.
  23. V. G. Gavriljuk, V. A. Sirosh, YU. N. Petrov, A. I. Tyshchenko, W. Theisen, A. Kortmann : Metall. Mater. Trans. A, 45A (2014) 2453-2465.
  24. J. O. Anderson, T. Helander, L. Hoglund, P. F. Shi, B. Sundman : Calphad, 26 (2002) 273-312. https://doi.org/10.1016/S0364-5916(02)00037-8
  25. Thermo-Calc Software TCFE7 Steels/Fe-alloys database version 7, 2012.
  26. I. Picas, N. Cuadrado, D. Casellas, A. Goez, L. Llanes : Procedia Engineering, 2 (2010) 1777-1785. https://doi.org/10.1016/j.proeng.2010.03.191
  27. E. Martinez-Gonzalez, I. Picas, D. Casellas, J. Romeu : J. Acoustic Emission, 28 (2010) 163-169.
  28. W. C. Leslie : The Physical Metallurgy of Steels, International student edition, McGraw-Hill Kogakusha, Tokyo, Japan (1982) 115-120.
  29. J. -H. Kang, B. Hosseinkhani, C. A. Williams, M. P. Moody, P. A. J. Bagot, P. E. J. Rivera-Diaz-del-Castillo : Scr. Mater., 69 (2013) 630-633. https://doi.org/10.1016/j.scriptamat.2013.07.017
  30. B. Kim, E. Boucard, T. Sourmail, D. San Martin, N. Gey, P. E. J. Rivera-Diaz-del-Castillo : Acta Mater., 68 (2014) 169-178. https://doi.org/10.1016/j.actamat.2014.01.039
  31. Q. Zhou, X. Wu, N. Min : Met. Mater. Int., 17 (2011) 547-552. https://doi.org/10.1007/s12540-011-0803-y
  32. F. Pan, P. Ding, S. Zhou, M. Kang, D. V. Edmonds : Acta Mater., 45 (1997) 4703-4712. https://doi.org/10.1016/S1359-6454(97)00121-3
  33. W. M. Garrison, Jr. : ISIJ Int., 46 (2006) 782-784. https://doi.org/10.2355/isijinternational.46.782
  34. H. N. Han, C.-S. Oh, G. Kim, O. Kwon : Mater. Sci. Eng. A, 499 (2009) 462-468. https://doi.org/10.1016/j.msea.2008.09.026
  35. H. K. D. H. Bhadeshia, R. W. K. Honeycombe : Steels Microstructure and Properties, 3rd ed, Elsevier, Oxford, UK (2006) 71-93.
  36. L. Wang, Q. Cai, H. Wu, W. Yu : Int. J. Minerals, Metall. Mater., 18 (2011) 543-550. https://doi.org/10.1007/s12613-011-0475-0
  37. G. R. Speich, A. J. Schwoeble, G. P. Huffman : Metall. Trans. A, 14A (1983) 1079-1087.

Cited by

  1. 매트릭스(matrix)형 냉간금형강의 기계적 특성에 미치는 NbC 탄화물 첨가의 영향 vol.28, pp.5, 2015, https://doi.org/10.12656/jksht.2015.28.5.239
  2. Hot Stamping Parts Shear Mold Manufacturing via Metal Additive Manufacturing vol.12, pp.3, 2022, https://doi.org/10.3390/app12031158