Browse > Article
http://dx.doi.org/10.12656/jksht.2013.26.2.72

The Effects of Homogenization, Hot-Forging, and Annealing Condition on Microstructure and Hardness of a Modified STD61 Hot-Work Tool Steel  

Park, Gyujin (Department of Materials Science and Engineering, Yonsei University)
Kang, Min-Woo (Department of Materials Science and Engineering, Yonsei University)
Jung, Jae-Gil (Department of Materials Science and Engineering, Yonsei University)
Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University)
Kim, Byung-Hoon (Casting & Forging BG, Doosan Heavy Industries & Construction)
Publication Information
Journal of the Korean Society for Heat Treatment / v.26, no.2, 2013 , pp. 72-79 More about this Journal
Abstract
The effects of homogenization, hot-forging, and annealing condition on microstructure and hardness of a modified STD61 hot-work tool steel were investigated. The ingot specimen had a dendritic structure consisting of bainite and martensite. Spherical VC particles of approximately 50 nm and cuboidal (V,Ti)C particles of about 100 nm were observed in the ingot specimen. After homogenization, the dendritic structure was blurred, and the difference in hardness between martensite and bainite became narrow, resulting in the more homogeneous microstructure. Needle-shaped non-equilibrium $(Fe,Cr)_3C$ particles were additionally observed in the homogenized specimen. The hot-forged specimen had bainite single phase with spherical VC, cuboidal (V,Ti)C, and needle-shaped $(Fe,Cr)_3C$ particles. After annealing at $860^{\circ}C$, the microstructures of specimens were ferrite single phase with various carbides such as VC, $(Fe,Cr)_7C_3$, and $(Fe,Cr)_{23}C_6$ because of relatively slow cooling rates. The size of carbides in annealed specimens decreased with increasing cooling rate, resulting in the increase of hardness.
Keywords
Tool steel; Homogenization; Hot-forging; Annealing; Precipitation; Phase transformation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Leskovsek, B. Sustarsi , and G. Jutrisa : J. Mater. Process. Technol. 178 (2006) 328.   DOI   ScienceOn
2 M. L. Fares, M. Athmani, Y. Khelfaoui, and A. Khettache : IOP Conf. Ser. Mater. Sci. Eng., Madrid, Spain (2012).
3 S. Mayer, H. Leitner, C. Scheu, I. Silier, and H. Clemens : Steel Research Int., 80 (2009) 89.
4 I. Souki, D. Delagnes, and P. Lours : ICM., 11, Como, Italy (2011).
5 L. A. Dobrza ski, J. Mazurkiewicz, and E. Hajduczek : J. Mater. Process. Technol., 157 (2004) 472.
6 V. Kuzucu, M. Aksoy, and M. H. Korkut : J. Mater. Process. Technol., 82 (1998) 165.   DOI   ScienceOn
7 A. Medvedeva, J. Bergstrom, S. Gunnarsson, and J. Andersson : Mater. Sci. Eng. A, 523 (2009) 39.   DOI   ScienceOn
8 M. L. Fares, M. Athmani, Y. Khelfaoui, and A. Khettache : IOP Conf. Ser. Mater. Sci. Eng., Madrid, Spain (2012).
9 P. Michaud, D. Delagnes, P. Lamesle, M. H. Mathon, and C. Levaillant : Acta Mater., 55 (2007) 4877.   DOI   ScienceOn
10 D. Delagnes, P. Lamesle, M. H. Mathon, N. Mebarki, and C. Levaillant : Mater. Sci. Eng. A, 394 (2005) 435.   DOI   ScienceOn
11 D. S. Ma, J. Zhou, Z. Z. Chen, Z. K. Zhang, Q. A. Chen, and D. H. Li : J. Iron Steel Inst. 16 (2009) 56.   DOI   ScienceOn
12 J. G. Jung, M. Jung, S. M. Lee, E. Shin, H. C. Shin, and Y. -K. Lee : J. Alloys Comp., 553 (2013) 299.   DOI   ScienceOn
13 L. R. Woodyatt and G. Krauss : Metal. Mater. Trans. A, 7 (1976) 983.   DOI
14 F. G. Caballero, H. K. D. H. Bhadeshia, K. J. A. Mawella, D. G. Jones, and P. Brown : Mater. Sci. Technol., 18 (2002) 279.   DOI   ScienceOn
15 J. Kalousek, D. M. Fegredo, and E. E. Laufer : in K. C. Ludema, ASME, Vancouver, Canada (1985) 212.
16 G. Krauss, Steels : Heat Treatment and Processing Principles 5th ed, ASM Int., Ohio (1990).