Browse > Article
http://dx.doi.org/10.12656/jksht.2015.28.4.181

Microstructures and Mechanical Characteristics of Advanced Cold-Work Tool Steels: Ledeburitic vs. Matrix-type Alloy  

Kang, Jun-Yun (Korea Institute of Materials Science)
Kim, Hoyoung (Korea Institute of Materials Science)
Son, Dongmin (SeAH CSS)
Lee, Jae-Jin (Shinhwa)
Yun, Hyo Yun (Shinhwa)
Lee, Tae-Ho (Korea Institute of Materials Science)
Park, Soon Keun (SeAH CSS)
Publication Information
Journal of the Korean Society for Heat Treatment / v.28, no.4, 2015 , pp. 181-189 More about this Journal
Abstract
Two types of advanced cold-work tool steels were characterized and compared. A higher-alloyed ledeburitic steel with primary carbides (denoted as 9Cr) and a lower-alloyed steel without primary carbides (5Cr) were fabricated by vacuum induction melting and subsequent hot forging. They were spheroidizing-annealed at $870^{\circ}C$, quenched at $1030^{\circ}C$ and tempered at 180 or $520^{\circ}C$. Their machinability after annealing and hardness, impact toughness, wear resistance after tempering were compared and interpreted in association with their characteristic microstructures. After annealing, 5Cr showed higher resistance to machining due to higher ductility and toughness in spite of lower strength and smaller carbide volume. Owing to smaller carbide volume fraction and the absence of coarse primary carbides, 5Cr showed even better impact toughness although the hardness was lower. The improved toughness of 5Cr resulted in excellent wear resistance, while smaller volume fraction of retained austenite also contributed to it.
Keywords
Cold-work tool steel; Carbide; Microstructure; Hardness; Toughness; Wear resistance; Machinability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. Roberts, G. Krauss and R. Kennedy : Tool Steels, 5th ed, ASM International, Materials Park, OH (1998) 7-28.
2 KS D 3753 : 지식경제부 기술표준원 (2008).
3 JIS G 4404 : Japanese Standards Association (2006).
4 ASTM A 681-08 : ASTM International (2008).
5 G. Roberts, G. Krauss and R. Kennedy : Tool Steels, 5th ed, ASM International, Materials Park, OH (1998) 203-217.
6 홍기정, 송진화, 정인상 : 열처리공학회지, 24 (2011) 262-270.
7 Advanced High Strength Steel (AHSS) Application Guidelines, Ver. 4.1, WorldAutoSteel, 2011, http://www.worldautosteel.org
8 J. P. McGulre : Advanced Stamping for High Strength Steels, in Great Designs in Steel Seminar, 2012, http://www.autosteel.org
9 E. Billur : Stamping Journal Jan/Feb (2010) 8-9.
10 김호영, 강전연, 손동민, 이대수, 이태호, 정우창, 조경목 : 열처리공학회지, 27 (2014) 242-252.
11 K. Fukaura, H. Sunada, Y. Yokoyama, K. Teramoto, D. Yokoi and N. Tsujii : Tetsu-to-Hagane, 84 (1998) 72-77.
12 K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii and K. Ono : Metall. Mater. Trans. A, 35A (2004) 1289-1300.
13 F. Arieta, E. B. M. netto, A. Reguly, W. K. Pannes, U. Beutler, F. van Soest and C. Ernst : J. ASTM Int., 8 (2011) 129-145.
14 J. -Y. Kang, Y. -U. Heo, H. Kim, D. -W. Suh, D. Son, D. H. Lee and T. -H. Lee : Mater. Sci. Eng. A, A614 (2014) 36-44.
15 Uddeholm Caldie : http://www.uddeholm.com
16 ASTM E 8 : ASTM International (2013).
17 ASTM E 23-02 : ASTM International (2002).
18 G. Xu, M. Kutsuna, Z. Liu and K. Yamada : Surface & Coatings Technology, 201 (2006) 1138-1144.   DOI
19 ASTM E975, ASTM international (2013).
20 H. Kim, J. -Y. Kang, D. Son, T. -H. Lee, K. -M. Cho : Mater. Characterization, 107 (2015) 376-385.   DOI
21 G. Roberts, G. Krauss and R. Kennedy : Tool Steels, 5th ed, ASM International, Materials Park, OH (1998) 97-104.
22 W. C. Leslie : The Physical Metallurgy of Steels, International student edition, McGraw-Hill Kogakusha, Tokyo, Japan (1982) 368-372.
23 V. G. Gavriljuk, V. A. Sirosh, YU. N. Petrov, A. I. Tyshchenko, W. Theisen, A. Kortmann : Metall. Mater. Trans. A, 45A (2014) 2453-2465.
24 J. O. Anderson, T. Helander, L. Hoglund, P. F. Shi, B. Sundman : Calphad, 26 (2002) 273-312.   DOI
25 Thermo-Calc Software TCFE7 Steels/Fe-alloys database version 7, 2012.
26 J. -H. Kang, B. Hosseinkhani, C. A. Williams, M. P. Moody, P. A. J. Bagot, P. E. J. Rivera-Diaz-del-Castillo : Scr. Mater., 69 (2013) 630-633.   DOI
27 I. Picas, N. Cuadrado, D. Casellas, A. Goez, L. Llanes : Procedia Engineering, 2 (2010) 1777-1785.   DOI   ScienceOn
28 E. Martinez-Gonzalez, I. Picas, D. Casellas, J. Romeu : J. Acoustic Emission, 28 (2010) 163-169.
29 W. C. Leslie : The Physical Metallurgy of Steels, International student edition, McGraw-Hill Kogakusha, Tokyo, Japan (1982) 115-120.
30 B. Kim, E. Boucard, T. Sourmail, D. San Martin, N. Gey, P. E. J. Rivera-Diaz-del-Castillo : Acta Mater., 68 (2014) 169-178.   DOI
31 Q. Zhou, X. Wu, N. Min : Met. Mater. Int., 17 (2011) 547-552.   DOI
32 F. Pan, P. Ding, S. Zhou, M. Kang, D. V. Edmonds : Acta Mater., 45 (1997) 4703-4712.   DOI
33 W. M. Garrison, Jr. : ISIJ Int., 46 (2006) 782-784.   DOI
34 H. N. Han, C.-S. Oh, G. Kim, O. Kwon : Mater. Sci. Eng. A, 499 (2009) 462-468.   DOI
35 H. K. D. H. Bhadeshia, R. W. K. Honeycombe : Steels Microstructure and Properties, 3rd ed, Elsevier, Oxford, UK (2006) 71-93.
36 L. Wang, Q. Cai, H. Wu, W. Yu : Int. J. Minerals, Metall. Mater., 18 (2011) 543-550.   DOI
37 G. R. Speich, A. J. Schwoeble, G. P. Huffman : Metall. Trans. A, 14A (1983) 1079-1087.