• Title/Summary/Keyword: tool geometry

Search Result 540, Processing Time 0.021 seconds

A Study on the End Mill Wear Detection by the Pattern Recognition Method in the Machine Vision (머신비젼으로 패턴 인식기법에 의한 엔드밀 마모 검출에 관한 연구)

  • 이창희;조택동
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • Tool wear monitoring is an important technique in the flexible manufacturing system. This paper studies the end mill wear detection using CCD camera and pattern recognition method. When the end mill working in the machining center, the bottom edge of the end mill geometry change, this information is used. The CCD camera grab the new and worn tool geometry and the area of the tool geometry was compared. In this result, when the values of the subtract worn tool from new tool end in 200 pixels, it decides the tool life. This paper proposed the new method of the end mill wear detection.

Design and analysis tool for optimal interconnect structures (DATOIS) (최적회로 연결선 구조를 위한 설계 및 해석도구 (DATOIS))

  • 박종흠;김준희;김석윤
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.7
    • /
    • pp.20-29
    • /
    • 1998
  • As the packing density of ICs in recent submicron IC design increases, interconnects gain importance. Because interconnects directly affect on two major components of circuit performance, power dissipation and operating speed, circuit engineers are concerned with the optimal design of interconnects and the aid tool to design them. When circuit models of interconnects are given (including geometry and material information), the analysis process for the given structure is not an easy task, but conversely, it is much more difficult to design an interconnect structure with given circuit characteristics. This paper focuses on the latter process that has not been foucsed on much till now due to the complexity of the problem, and prsents a design aid tool(DATOIS) to synthesize interconnects. this tool stroes the circuit performance parameters for normalized interconnect geometries, and has two oeprational modes:analysis mode and synthesis mode. In the analysis mode, circuit performance parameters are obtained by searching the internal database for a given geometry and interpolates results if necessary . In thesynthesis mode, when a given circuit performance parameter satisfies a set of geometry condition in the database, those geometry structures are printed out.

  • PDF

A Study on the Machinability of STS 304 (STS 304의 절삭성에 관한 연구)

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.779-782
    • /
    • 2000
  • This paper aimes to clarify the effects of tool geometry on the tool life in machining of STS 304. The main conclusions obtained were as follows. The lift of TiN coated cermet tool was the longest, exhibiting shorter life in the order of P2O, cermet, TiCN coated carbide and TiAIN coated carbide tools. S-type tool showed the best performance of all tools used in this tests due to preventing the boundary wear of the side cutting edge.

  • PDF

Generalized Method for Constructing Cutting Force Coefficients Database in End-milling (엔드밀링 가공에서 절삭력 계수 데이터베이스 구현을 위한 일반화된 방법론)

  • 안성호;고정훈;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.39-46
    • /
    • 2003
  • Productivity and machining performance can be improved by cutting analysis including cutting force prediction, surface error prediction and machining stability evaluation. In order to perform cutting analysis, cutting force coefficients database have to be constructed. Since cutting force coefficients are dependent on cutting condition in the existing research, a large number of calibration tests are needed to obtain cutting force coefficients, which makes it difficult to build the cutting force coefficients database. This paper proposes a generalized method for constructing the cutting force coefficients database us ins cutting-condition-independent coefficients. The tool geometry and workpiece material were considered as important components for database construction. Cutting force coefficients were calculated and analyzed for various helix and rake angles as well as for several workpiece. Furthermore, the variation of cutting force coefficients according to tool wear was analyzed. Tool wear was found to affect tool geometry, which results in the change of cutting force coefficients.

Developing Geometry Software for Exploration-Geometry Player

  • Yuan, Yuan;Lee, Chun-Yi;Huang, Jiung-Rong
    • Research in Mathematical Education
    • /
    • v.11 no.3
    • /
    • pp.209-218
    • /
    • 2007
  • The purpose of this study is to create an interactive tool Geometry Player for geometric explorations. In designing this software, we referred to van Hiele's geometric learning theory of and Duval's cognitive comprehension theory of geometric figures. With Geometry Player, it is easy to construct and manipulate dynamic geometric figures. Teachers can easily present the dynamic process of geometric figures in class, and students can use it as a leaning tool to construct geometric concepts by themselves. It is hoped that Geometry Player can be a useful assistant for teachers and a nice partner for students. A brief introduction to Geometry Player and some application examples are included in this paper.

  • PDF

Force Prediction and Stress Analysis of a Twist Drill from Tool Geometry and Cutting Conditions

  • Kim, Kug-Weon;Ahn, Tae-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2005
  • Drilling process is one of the most common, yet complex operations among manufacturing processes. The performance of a drill is largely dependent upon drilling forces, Many researches focused on the effects of drill parameters on drilling forces. In this paper, an effective theoretical model to predict thrust and torque in drilling is presented. Also, with the predicted forces, the stress analysis of the drill tool is performed by the finite element method. The model uses the oblique cutting model for the cutting lips and the orthogonal cutting model for the chisel edge. Thrust and torque are calculated analytically without resorting to any drilling experiment, only by tool geometry, cutting conditions and material properties. The stress analysis is performed by the commercial FEM program ANSYS. The geometric modeling and the mesh generation of a twist drill are performed automatically. From the study, the effects of the variation of the geometric features of the drill and of the cutting conditions of the drilling on the drilling forces and the stress distributions in the tool are calculated analytically, which can be applicable for designing optimal drill geometry and for improving the drilling process.

Study on drilling of CFRP/Ti6Al4V stack with modified twist drills using acoustic emission technique

  • Prabukarthi, A.;Senthilkumar, M.;Krishnaraj, V.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.573-588
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic (CFRP) and Titanium Alloy (Ti6Al4V) stack, extensively used in aerospace structural components are assembled by fasteners and the holes are made using drilling process. Drilling of stack in one shot is a complicated process due to dissimilarity in the material properties. It is vital to have optimal machining condition and tool geometry for better hole quality and tool life. In this study the tool wear and hole quality were analysed by experimental analysis using three modified twist drills and online tool condition monitoring using Acoustics Emission (AE) sensor. Helix angle and point angle influence tool performance and cutting force. It was found that a tool geometry (TG1) with high helix angle of $35^{\circ}$ with low point angle $130^{\circ}$ results in reduction in thrust force of 150-500 N range but the TG2 also perform almost similar to TG1, but when compared with the AErms voltage generated during drilling it was found that progressive rise in voltage in TG1 is less with respect to TG2 which can be attributed to tool life. In process wear monitoring was done using crest factor as monitoring index. AErms voltage were measured and correlated with the performance of the drills.

A Study o burr formation along helix angle in end milling (엔드밀 가공시 헬리스각 변화에 따른 버어형성에 관한 연구)

  • 장성민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.485-491
    • /
    • 1999
  • A burr is formed in every corner of parts as a result of machining, which produces undesirable edge geometry and influence deeply to surface quality of workpiece. Therefore these burrs must be removed certainly. The cost of removing these burrs is directly proportional to their size. Burrs have been among the most troublesome obstruction to high productivity and automation of machining processes. The proper selection of cutting condition and tool geometry will be helpful to reduce the occurrence of burrs. In paper will observe burr formation along helix angle in end milling and certificate experimentally mechanics relation of helix angle and burr formation.

  • PDF

Influence of CBN Tool Geometry on Cutting Characteristics of High Hardened Steel (CBN 공구의 형상이 고경도강의 절삭특성에 미치는 영향)

  • 문상돈;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.25-30
    • /
    • 2001
  • The purpose of this investigation is experimentally to clarify the machinability and optimum tool geometry on milling of hardened STD11 steel. In the finish process office milling of high hardened STD11 steel by CBN tool, the optimum tool shape is suggested, which can minimize the tool fracture and chipping by impact. It is measured that cutting farce, tool wear and surface roughness generated during single-insert face milling using various geometric CBN tools. It has been found that the optimal chamfer angle of CBN tool is about -$25^{\circ}C$ and the suitable chandler width is 0.2mm. The nose radius of tool is the most excellent at 1.2mm in the viewpoint of tool wear and surface roughness.

  • PDF

Tool-Wear Characteristics in Turning of STS 304 (STS 304 선삭시의 공구마멸 특성)

  • 이재우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.56-64
    • /
    • 2003
  • The effect of tool geometry on the tool wear in turning the austenitic stainless steel, STS 304 was investigated. The wear of TiN-TiCN-TiC-TiAlN coated tungsten carbide tool was the smallest, showing larger wear in the order of Si-Al-O-N ceramic, TiN coated tungsten carbide, TiN- TiCN- TiN coated tungsten carbide, TiC-TiN cermet and M20 tungsten carbide tools at the same cutting conditions. The S-type tool of M20 with the larger side cutting edge angle showed the smallest tool wear in all tests due to preventing the groove wear of the side cutting edge. The wear of the S-type tool with the rake angle of $15^{\circ}$ became smaller than with that of $-5^{\circ}$, but the tool with the nose radius of 0.8mm did not perform much better with increasing the rake angle.